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Анотація—Розглянуто задачу організації спрямованого 
переміщення скінченого автомата без компасана графі 
квадратної цілочисельної решітки з позначеними 
вершинами. Знайдено мінімальну кількість класів позначок 
необхідну і достатню для того, щоб автомат зберігав 
довільний напрямок пересування на графі. Розроблено 
алгоритми побудови мінімальної вершинної розмітки для 
скінчених та нескінчених решіток. 

Abstract—This paper deals with the problem of organizinga 
directional movement of a finite automaton without a compass on 
vertex-labeledsquare grid graph. A minimal number of classes of 
vertex labels is found that is necessary and sufficient for the 
automaton to maintain movement direction on the 
graph.Algorithms for constructing minimal vertex-labeling for 
finite and infinite grids are developed. 
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I. INTRODUCTION 
Automata walking on graphs are a mathematical 

formalization of autonomous mobile agents with limited 
memory operating in discrete environments. Under this model 
arose an intensively developing broad area of studies of the 

behaviour of automata in labyrinths (labyrinth is an embedded 
directed graph of special form) [1, 2]. Research in this regard 
received a wide range of applications, for example, in the 
problems of image analysis and navigation of mobile robots 
[3]. The results for automata and labyrinths are based on the 
important assumption that automata operating in labyrinths can 
distinguish directions, that is, they have a compass [4, 5]. 

In this paper we consider the following problem. Initially 
the automaton located at an arbitrary vertex of the vertex-
labeled square grid graph. The automaton looking over 
neighborhood of the current vertex and may travel to some 
neighboring vertex selected by its label. The automaton does 
not distinguish between equally labeled vertices by their 
coordinates of direction (that means automaton has no 
compass). It is required to find necessary and sufficient 
conditions in the form of restrictions on the properties of the 
automaton and on the labeling of the graph under which the 
automaton maintain movement direction. 

II. BASIC DEFINITIONS 
Let  denote the set of all positive integers and  the set 

of integers. For any  we set . 

An infinite square grid graph  is the graph whose 
vertices correspond to the points in the plane with integer 
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coordinates and two vertices are connected by an edge 
whenever the corresponding points are at distance . It is a 
regular graph where each vertex has degree . We consider 
the vertex coordinates as its name. A square grid graph 

 is a subgraph of the  induced by all vertices 
whose -coordinates being in the range  and -
coordinates being in the range .We will consider the 
infinite pass graph as a degenerate square grid graph 
. 

A labeled graph is a simple connected vertex-labeled graph 
, where  is a set of vertices,  is a set of 

edges,  is a set of labels, is a mapping. The set 
of vertices adjacent to a vertex is called the open 
neighborhood of . The neighborhood of  in which  itself is 
included is called closed neighborhood. A sequence of vertices 

where for will be called 
the path in the graph . We call the length of the path 

. The label of this path is the word in 
the alphabet of labels . We say that the word is defined 
by the vertex . 

A graph-walking automaton on labeled graph  is a 
sextuple , where  is a finite set of 
internal states, is a finite 
input alphabet ( is a current vertex label, is a set 
(or multiset) of labels of all vertices on the current vertex 
neighborhood, is a degree of current vertex), is a 
finite output alphabet ( means that the automaton moves 
from the current vertex to the adjacent vertex with the label ), 

is the initial state, is a transition function, 
is an output function. Given a labeled graph , 

the automaton begins its computation in the state , observing 
the labeling  of closed neighborhood of vertex . At each 
step of the computation, with the automaton in a state  
observing a labeling of closed neighborhood of vertex , the 
automaton looks up the transition tables and for and . 
If is defined as and is defined as , the 
automaton enters the state and moves to the vertex labeledby 

. The automaton does not have a compass, that is, it does not 
distinguish directions and relative position of vertices. 
Therefore, it does not distinguish vertices with the same labels. 
It is shown in [6] that automaton without additional resources 
cannot maintain movement direction on the graph all whose 
vertices are unlabelled or, equivalently, are labeled with the 
same label. 

Let automaton at time be placed at the vertex of 
graph . The automaton movement is called uniform and 
directional if there exists period that 

or any time $t$. 

III. VERTEX LABELLING SUFFICIENT FOR DIRECTIONAL 
MOVEMENT 

Let us select on graph two pairs of opposing 
directions corresponding to coordinate axes on the plane . 
Any automaton trajectory on this graph can be represented as a 
sequence of moves along these directions. The number of 
different sequences of labels that automaton must remember 
increases with the number of directions it can moves along. 
The complexity of automaton increases as a result. An 
automaton that can move only in four directions defined by 
coordinate axes we will consider as a simple one. The 
computing capabilities of a finite automaton are limited by 
amount of memory. This leads to restrictions on the labeling of 
the graph by which automaton moves. First, the alphabet of 
vertex labels must be finite, and secondly, the words in this 
alphabet defining the trajectories of the automaton must have a 
periodic structure. The labeling of graph can be considered 
as function . A labeling of is periodic in 
direction if for all . We 
call a labeling traversable if an automaton can move on the 
graph in any direction with its use. A vertex labeling that 
minimizes the number of different label types is called a 
minimal labeling. 

Labeling function is called deterministic if all vertices in 
closed neighborhood of every vertex have different labels. We 
call labeled graph deterministic if its labeling function is 
deterministic. From the definition of deterministic graph it 
follows: (1) for any vertex, every word in the alphabet of labels 
defines at most one path from this vertex; (2) the distance 
between two equally labeled vertices is at least  (see [7] for 
more details). These properties provide a principled 
opportunity for targeted movement of the graph-walking 
automaton on a deterministic graph. For example, it is possible 
to construct an automaton moving along paths connecting the 
vertices of a graph if the labels of these paths are known. 

Theorem 1. For a minimal traversable deterministic 
labeling of the path graph it is necessary and 
sufficient to have three types of labels. 

Let us build a minimal traversable deterministic labeling of 
the graph . Without loss of generality, assume the 

. We define the required labeling by the following 
condition: for any vertex if , , then vertices 
adjacent to have labels and where 

denotes addition modulo . The obtained labeling is 
periodic in the direction . An automaton using this labeling 
can move in two opposite directions, which we will 
conditionally call “east” and “west”. Suppose the automaton is 
at the vertex labeled by . Then in order to move to the “east”, 
it must moves to the vertex labeled by , and in order to move 
to the “west” – to the vertex labeled by . 

Theorem 2. For a minimal traversable deterministic 
labeling of the square grid graph: 
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1) it is necessary and sufficient to have four 
types of labels; 

2) it is necessary and sufficient to have five types of 
labels. 

Let us build a minimal traversable deterministic labeling of 
the graph . Assume . We define the 
required labeling by the following condition: for any vertex if 

, , then vertices adjacent to have labels 
, and , where denotes 

addition modulo . As an example, let is an 
arbitrary vertex and , , , 

. The obtained labeling is periodic in the direction 
. Under this labeling the automaton movement along 

abscissa axis from vertex are similar to the movements 
eastward and westward on the graph . The 
automaton movement along ordinate axis is to move to a vertex 
labeled by . 

Let us build a minimal traversable deterministic labeling of 
the graph . Assume . We define the 
required labeling by the following condition: for any vertex if 

, , then vertices adjacent to have labels 
, , and , 

where denotes addition modulo . As an example, let 
is an arbitrary vertex and , , 

, ,  (see Figure 1). 
The obtained labeling is periodic in directions and . 
An automaton using this labeling can move in two pairs of 
opposite directions, which we will conditionally call “east”, 
“west”, “north” and “south”. Suppose the automaton is at the 
vertex labeled by . Then in order to move to the “east”, it 
must moves to the vertex labeled by , to the “west” – , to 
the “north” – , to the “south” – . 

 
Fig.1. A minimal deterministic labeling of the square grid graph. 

Corollary 1. For a minimal traversable deterministic 
labeling of the square grid graph , , , it 
is necessary and sufficient to have five types of labels. 

We will consider a graph traversal as any path passing 
through all vertices of the graph. It is shown that there exists an 

automaton that traverses any graph with minimal 
deterministic labeling. A single graph-walking automaton 
without any enhancements cannot traverse infinite graph. In 
studies of behavior of automata in labyrinths, one of 
enhancements consists of permission to drop and lift pebbles at 
the vertices. In essence, the permission to drop pebbles means 
that the automaton possesses an unbounded external memory, 
which greatly increases its possibilities. It is shown that there 
exists an automaton with two pebbles that traverses any graph 

with minimal deterministic labeling, where . It 
is also shown that there exists an automaton with three pebbles 
that traverses graph with minimal deterministic labeling. 

IV. MINIMAL TRAVERSABLE LABELING 
In this section we discuss problem: is it possible to build a 

traversable labeling of square grid graph with fewer types of 
labels than deterministic labeling? 

We call a path deterministic if its labeling 
satisfies condition: for any path vertex there 

exists unique adjacent vertex labeled by where . 
It is shown that for the traversability of graph labeling it is 
necessary and sufficient that for any vertex there exists a 
deterministic path to all vertices from its neighborhood. 

Theorem 3. For a minimal traversable labeling of the path 
graph it is necessary and sufficient to have two types 
of labels. 

Let us build a minimal traversable labeling of the graph 
. Assume . We define the required 

labeling by following condition: for any vertex if , 
, then vertices adjacent to have labels and 

. The obtained labeling is periodic in direction . An 
automaton using this labeling can move in two opposite 
directions: first – to the vertex whose label coincides with the 
label of current vertex and second – to the vertex whose label 
different from the label of current vertex. We will conditionally 
call first direction “west” and second direction – “east”. Let 

are arbitrary vertices and . Then “east” 
for the automaton at the vertex means “west” for the 
automaton at the vertex and vice versa. This is the 
difference between considered labeling and deterministic 
labeling where at any vertex both directions are uniquely 
defined. The automaton movement “eastward” consists in the 
sequential repetition of two steps: (1) move to the vertex whose 
label different from the label of current vertex; (2) move to 
vertex whose label coincides with the label of current vertex. 
Movement “westward” is obtained by interchanging of steps 
(1) and (2). 

Let be arbitrary finite square grid graph where 
, . It is shown that traversable labeling of 

using two types of labels does not exist. 

Theorem 4. For a minimal traversable labeling of the 
square grid graph it is necessary and sufficient to have 
three types of labels. 
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Let us build a minimal traversable labeling of the graph 
. Assume . One of possible labeling of this 

graph defines by following conditions: if vertices , 
, labeled by then vertices 
, , ,  labeled by 

and vertices , , , 
 labeled by  (see Figure 2). The 

obtained labeling is periodic in directions and . It is 
shown that under this labeling for any vertex there exists a 
deterministic path to all vertices from its neighborhood. The 
sequence of such paths determines the movement in the 
required direction. 

 
Fig.2. A minimal labeling of the square grid graph. 

Corollary 2. For a minimal traversable labeling of the 
square grid graph , where , , it is 
necessary and sufficient to havethree types of labels. 

It is shown that there exists an automaton that traverses any 
graph with minimal labeling. It is also shown that 
there exists an automaton with three pebbles that traverses 
graph with minimal labeling. 

An automaton built to move using minimal traversable 
labeling is more complicated than an automaton that uses 
deterministic labeling for movement. The reason is that the first 
automaton may need to go through several other vertices in 
order to get from the current vertex to an adjacent one. The 
automaton trajectories are particularly complicated for vertices 
that define external face of a finite graph. Hence minimizing 
traversable labeling of the graph leads to an increase in 
complexity of the graph-walking automaton. 

V. BUILDING MINIMAL TRAVERSABLE LABELING 
Due to the applicability of both types of minimal labeling to 

organization of a directional movement of a graph-walking 

automaton the following problem arises: is it possible to 
construct an automaton that is capable of constructing a 
minimal labeling (or deterministic labeling) of an unlabeled 
graph? Theorems 5 and 6 give positive answers to the question 
of this problem. 

Theorem 5. There exists an automaton that build minimal 
traversable labeling (deterministic labeling) on path graph 

. 

Theorem 6. There exists an automaton with three pebbles 
that build minimal traversable labeling (deterministic labeling) 
on square grid graph . 

Here similar to that of preceding section the automaton 
building a minimal labeling is more complicated than the 
automaton building a deterministic labeling. 

CONCLUSION 
Necessary and sufficient conditions in the form of 

restrictions on the properties of the automaton and on the 
labeling of the graph under which the automaton without a 
compass maintains movement direction are obtained. Two 
types of automaton traversable vertex labeling of the graph are 
proposed. Methods and algorithms of automaton traversal of 
finite and infinite graphs and building both types of labeling for 
unlabeled graphs are developed. The obtained results lay the 
basis for studying navigation of automata without a compass 
and their collectives in stationary homogeneous discrete 
environments. 
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