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Abstract—A new method of modeling for heterogeneous fluid 
dynamics processes with take of phase transitions like graphite-
diamond will be presented. The method is based on a 
discretization of conservation laws for masses, momentums, and 
energies in integral and differential forms. The combination of 
Harlow's particle-in-cell method and Belotserkovskii's large 
particles method is used for computing by the method simulation.  

Анотація—Новий методмоделювання процесів динаміки 
неоднорідної рідини з урахуванням фазових переходів 
графіт-алмазбуде презентовано. Метод ґрунтується на 
дискретизації законів збереження маси, моментів і енергії в 
інтегральній і диференціальній формах.  Комбінація методів 
частинок у комірках Харлоу та методу крупних частинок 
Білоцерківського використовується при чисельній реалізації 
цього методу. 
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transitions;conservation laws;graphite-diamond transition. 

Ключові слова—моделювання; процеси гідродинаміки; 
фазові переходи; закони збереження;перехідграфіт-алмаз. 

I. INTRODUCTION 
A new method of direct parameter computing for some 

processes of heterogeneous fluiddynamics with take of phase 
transitions like graphite-diamond will be presented. It is 
supposed that the fluids arecompressible and inviscid (non-
viscous). Heterogeneities of thefluids are consideredas small 
drops or particles of one fluidwithin other fluid. Total number 
of the drops may be largeenoughand the drops may have phase 
transitions. Thus simulations of themain fluid (or gas) with 
small transited drops dynamics arediscussed. These are 
dynamics of multiphase flows really.Therefore it is possible to 

use general multiphase flow models inthe case. However, 
relevant equations are not complete as a rule. Forexample, 
there is a problem as to distribute energies between thephases 
in the modeldynamics. Various physical experiments 
arenecessary for solving of the problem in concrete cases. 
Thesituation is more difficult whenever phase transitions like 
graphite-diamond arepossible. 

Presented method is based on a discretization of 
conservation lawsfor masses, momentums, andenergies in 
integral and differential forms. Thediscretization is natural and 
numerical simulations are realizedas direct computer 
experiments for dynamics of main fluid togetherwith transited 
drops without use multiphase flows approach. Themethod 
seems to be much more adequate to the physical 
andmathematicalessence of the dynamics becauseconservation 
laws arecorrect on the discrete level at least.  

The presented method is a combination of the Harlow's 
particle-in-cell method and Belotserkovskii's large particles 
method(see [1] and [2], for example). Let us recall some 
background of the methods before to give moredetails on the 
method combination. 

Euler's and Lagrange's approaches are used simultaneously 
in theparticles in cells method for homogeneous fluid (or gas). 
Themethod is based on a discretization of conservation laws 
formasses, momentums, and energies of the fluid in the 
following integralforms  
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where and are volume and surface of 
someLagrange's domain in the fluid, is an exterior normal 
tothe domain, and are unknowndensity, 
velocity, and full energy. For example, the case of 
threedimension space may be discussed and therefore by 
definition ones have  

 

II. MODELING METHOD 
It is known [1] that the conservationlaws are equivalent to 

conservation laws formasses, momentums, and energies of the 
fluid in the following differentialforms  
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where  is the tensor square of vector function 
 and  is a point of some domain , 

which is filled by the heterogeneous fluid under consideration. 
The time discretization in the method is natural. 

Simulations areconducted step by step with a small enough 
time interval  that startingfrom an initial configuration. The 
space discretization in themethod is more complicated and 
dynamics are taking intoconsideration. The fluid region  is 
divided into cells with the small size and the fluid filling 
every such cell is considered as acollection of a few particles 
or drops. Every such particle haveown mass, volume, energy, 
and coordinates that are specified at aninitial moment. In 
addition the density, velocity, and full energy 

are specified for every such cell with number 
at the time moment . 

Correspondingtime step of the simulation is split up to 
three stages so thediscrete conservation laws are faithful. For 
example, the total massof particles under consideration is 
saved at every time step of suchdiscretization. 

On the first stage of the time step, the intermediate 

velocities  and the energy  ofparticles from the 
sell with number  are calculated by the following 
formulas 
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and similar formula is used for .   

This is the Euler'sstage for approximations of transport 
free momentums equations in(1) by the pressure forces for 
every sell. On the second stage, motions of the particlesby the 
velocities are taking into account. This is the Lagrange'sstage 
for an approximation of masses equation that is modeling 
ofmass transports from a sell to surrounding sells. On the 
thirdstage, moving of the momentums and energy are 
calculated. This isthe concluding stage for approximations of 
pressure free momentumsand energies equations in (1) that are 
modeling of the momentumsand energy transports by the 
dynamics from a sell to surroundingsells. 

The approximations are rationale from physical and 
mathematicalpoint of view since conservation laws are correct 
on the discretelevels during the courses of corresponding 
numerical simulations.Therefore the particle-in-cells method 
is effective enough fornumerical evaluations of homogeneous 
fluid (or gas) dynamics byboundary conditions and external 
forces. Concrete types of fluidare defined here by a form of 
state equation where  is a notation 
forinterior energy. 

An essential problem is only that total number of particles 
may bevery large. Indeed total number of cells must be large 
enough forbest approximations and the number of particles at 
every cell mustbe large enough also. Moreover every such 
particle must have ownmass, volume, energy, and coordinates. 
Thus there is massive dataand the data is recalculated from 
step to step. 
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In order to avoid the problem it is possibly to use the 
largeparticles method. The time discretization in the method is 
similarto the discretization in the particles in cells method. 
The spacediscretization in the method is following. Fluid 
region is dividedinto cells with small size and the fluid filling 
every such cellis considered as a large particle or drop. Every 
such particlehave own mass, volume and energy that are 
specified at an initialmoment. In addition the density, velocity, 
and full energy arespecified for every such cell at the moment. 
But the volume ofparticle is coincided with the volume of cell 
now. Therefore themass and energy of particle are defined by 
the density and fullenergy. Thus the data is not so massive in 
the method. 

Corresponding time step of the simulation is split up to 
threestages also and so the discrete conservation laws are 
faithful.The stages are similar to the stages of the particles in 
cellsmethod, for example, formulas (3) are used on the first 
stage. Modifications are need only for modeling of the mass 
andmomentums transports by the dynamics. For example, the 
masstransports are calculated as moving of corresponding 
share oflarge particle mass from the cell to corresponding 
surroundingsell by the following formulas 
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where   are calculated as 
in (3) and we use the equalities   
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On the thirdstage, moving of the momentums 

 and the energy on the step  are 
calculated by the following formulas 
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where  is the volume of the cell under 

consideration and the values   are 
calculated as in formulas (5).  

Thus total mass of the fluid under consideration is saved 
atevery time step of such discretization if there are no 
externalmass sources under the simulation of course. For 
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example, the masssources may be induced by boundary 
conditions and external forcesthat leads to corresponding 
modifications of conservation laws in(1) and on the discrete 
level also. The momentums and energytransports are modeling 
in similar manners.The approximations are rationale also. 
Thus largeparticles method is effective enough for numerical 
evaluationsof homogeneous fluiddynamics alsoand the 
recalculateddata is not very massive as in particle-in-cell 
method. 

Let us return to presented method. The method is designed 
tonumerical modeling of the main fluid with small transited 
dropsdynamics. The time discretization in the method is as in 
abovemethods.The space discretization in the method is 
following.Heterogeneous fluid region is divided into cells with 
small size.The main fluid filling every such cell is considered 
as a largeparticle while the transited drops are considered as 
thecollection of a few "small" particles in the cell. Every 
largeparticle have own mass, volume and energy that are 
specified at aninitial moment. Every small particle have own 
mass, volume,energy, and coordinates that are specified at the 
moment. Inaddition the density, velocity, and full energy are 
specified forevery such cell. This is a combination of above 
methods atthe initial moment. Corresponding time step of the 
simulation is split up to threestages with additional 
preliminary stage.  

On the preliminarystage, energies of large particle and 
small particles in everycell are distributed between the 
particles so that a pressure inthe cell is uniform. Indeed the 
large particle induce somepressure by own state equation and 
the small particles induce somepressure by own state equation 
and it is natural to distributeenergies of the particles so that the 
first pressure coincideswith second pressure. Moreover on the 
stage, it is possible toobserve phase transitions of the small 
particles by the pressure,for example. The phase transitions 
are realized if the pressure ismore than critical pressure by the 
corresponding phase diagram. Inthe case the small particles 
may change own volume, energy, andstate equation. Thus the 
heterogeneous fluid may have three ormore phases.  Thus, we 
use formulas (3) on the stage to calculate the intermediate 

velocities  and the energy  ofparticles from the 
sell with number  at the time moment .The 
remaining stages are similar to the stages of above 
methods.For example, the mass transports are calculated as 
moving ofcorresponding share of large particle mass and small 
particlesmasses from the cell to corresponding surrounding 
sell by formulas (5), which are used in (6).  

Thus totalmass of the heterogeneous fluid under 
consideration is saved atevery time step of such discretization. 
The momentums  and the energy on the 
step  are modeling in similar manners by formulas (6). 
Thus, this is acombination of above methods from step to step 
during the coursesof corresponding numerical simulations. 
The method seems to bereasonable for numerical evaluations 
of such heterogeneous fluid(or gas) dynamics and the 

recalculated data is not very massive.On the other hand it is 
possible to use the particles in cellsmethod with the 
preliminary stages for modeling of the dynamics.But the 
recalculated data is very massive in the case.  

The presented method is designed to numerical modeling 
of following physical processes. Let consider graphite drops 
distributing uniformly in some fluid. More exactly, there is 
heterogeneous medium with graphite particles and the medium 
may be considered under high pressure as "fluid" with 
corresponding state equation. For example, we consider a 
cylinder of the medium that consist of copper with graphite 
particles. Let the cylinder be in an outside explosive tube 
device. Inducing detonation shock waves in the outside 
explosive tube device, we can observe dynamics of such shock 
waves incomputer experiments by the method.  

Results of the computerexperiments may be found in [3]. 
The results were in agreement with known results of 
physicalexperiments. More details of the presented method 
and other modifications may be found in papers [4,5].  

The presented method was applicable to numerical 
simulations ofplasma dynamics according to [6]. The plasma 
may be considered as gas with ionizedparticles. The gas and 
particles were defined by correspondingstate equations. 
Equations (2) were coupled with Maxwell'sequations and on 
the discrete level also. Inducing motions of theheterogeneous 
plasma in some region it was possible to observeabsorption of 
the ionized particles on relevant boundaries incomputer 
experiments by the method coupling with appropriatemethod 
for Maxwell's equations [3, 6]. Alternative methods and 
corresponding references for the problem may be found in [7]. 
Nevertheless, thepresented method seems to be perspective for 
numerical simulations ofother absorption and diffusion 
processes in complex fluidand plasma dynamics. 
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