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Abstract—This article is dedicated to research of
approximation properties of Lagrangian finite elements in
Hilbert spaces of functions defined on surfaces in three-
dimensional space. The conditions are determined for
convergence of collocation methods for solving Fredholm integral
equation of the first kind for simple layer potential that is
equivalent to Dirichlet problem for Laplace equation in R’.
Estimation is determined for the error of approximate solution of
this problem obtained using potential theory methods.
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Many physical processes (e.g. diffusion, heat flux,
electrostatic field, perfect fluid flow, elastic motion of solid
bodies, groundwater flow, etc.) are modeled using boundary
value problems for Laplace equation [1]. The powerful tools
for solving such problems are potential theory methods,
especially in the case of tired boundary surface or complex
shape surface [2]. In number of cases, application of potential
theory methods requires solving Fredholm integral equation of
the first kind. In particular, one of the cases is solving
Dirichlet problem in the space of functions with normal
derivative jump on crossing boundary surface using simple
layer potential [3]. The need to solve integral equations of the
first kind also arises when the sum of simple and double layer
potentials is used to solve the double-sided Dirichlet or
Neumann problem [4] or double-sided Dirichlet-Neumann
problem [5] in the space of functions that, same as their
normal derivatives, have jump on crossing boundary surface.
Many systems of integral equations for the simple and double
layer potentials that are equivalent to mixed boundary value
problems for Laplace equation, also contain integral equations
of the first kind [6].In general, researches of projection
methods convergence mainly focus on solving integral
equations of the second kind. Defining well-posed solvability
conditions for integral equations of the first kind that are
equivalent to boundary value problems for Laplace’s equation
in Hilbert spaces [7, 8] allows us to use projection methods for
numerical solution of such equations, thus avoiding resource-
consuming regularization procedures. In [9, 10] convergence
conditions are defined for the series of projection methods for
solving Fredholm integral equation of the first kind for simple
layer potential that is equivalent to three-dimensional Dirichlet
problem for Laplace equation while approximating desired
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potential density with complete systems of orthonormal
functions. However, if boundary surface has a complex shape
usage of such approximations poses considerable difficulties
for practical implementation of numerical methods. In this
case, finite elements of different types should be used for
approximation of desired potential densities. Derived
approximations, among other things, allow us to create
effective algorithms for singularities removal in kernels and
desired integral equation densities [11].

The purpose of the paper is to define convergence
conditions of collocation method for approximate solution of
Fredholm integral equations of the first kind by the example of
integral equation for the simple layer potential that is
equivalent to Dirichlet problem for Laplace equation using
approximation of desired potential density with systems of
Lagrangian finite elements of different orders.

II. LAGRANGIAN APPROXIMATIONS

Let us S =[0,a]><[0,b]CR2. Construct in the domain
S a rectangular grid S, with the steps # =a/n and
hy =blk, n,k=12,. Assign to each element of the grid S,
of domain §

Py =i, G+ DIx U, (G + D)1,
i=0()(n-1),j=0k-D),

a smaller rectangular grid Pif with thestepse; =/ /m and

& =My /m . Denote S, . =|J P andassociate with the set of
ij
nodes S, . a system of piecewise polynomial functions

{Lpi(8)} (1)

satisfying conditions
Lpt (S15) = 5p15ts ,SUpp {Lpt(é)} = Ppt )
Ppt Z{UPZJ :épt epij}aéls € Ppta (2)
L]

mn  mk
p=02=0"

where &, is the Kronecker symbol.

Functions (1)-(2) form a system of Lagrangian finite
elements of m-th degree in H"(S) .Denote by U ZV ! the linear
shellof this system, N;=(1+mn)(1+mk). It is obvious that



the restriction of system (1)-(2) onto an arbitrary rectangleP

of the grid S, is a basis in the space of polynomials P (B;) of

degree not higher than m, defined on P .Then

v cur, 3)

where U, 1@’ is the linear shellof the system of B-splines of m-
th degree defined on S, [12].
the operator

pL :VNI _)UNl ch(S) where VN‘ c RN , in the form

Choose extension

Ny N, i,
i3S WL©. @
i=0=0
Then, byvirtueoftheembedding 3),
thereexistsarestrictionoperator rL CH™(S) - VN !
suchthatapproximations (VLN ' p I ,rL 1y of the space

H™(S) are convergent and valid the estimates

S e

s 5
H'(S) ) ©)

where 0<¢<o <m+1, t <m ,and constant C >0 does not
depend on v.Thus, it is proved

Lemmal. Thereisarestrictionoperator rL CH™(S) - VN !

suchthatapproximations (VL D] My N N1y of the space H™(S)

are convergent and valid the estimates (5).
M
Assume that surface I' = [JI is m-smooth surface in R?
=1

[13]. Constructineach domain S; the rectangulargrid Slh with
the steps hl(l) =a;/n; and hg) =0, /k; and set on each element
Bj of the grid Slh a smaller grid with the steps 81(1) = hl(l) /m
and gg) = hg) /m, l=1,_M. Define analogously to (1), (2) in

each grid domain Slh’g = UBIIS the system of Lagrangian

finite elements

{Lg)(é(l))}nlm kzm 5(1) es), l—lM

Assign to the family Slh’g the grid T, , = UTI_] (Slh’g) on
=1

the surface I' , where 7;° ](Pl.jl.’e) are the elements of the grid

L..l= 1,M . Denote by T; the set of nodes of the grid Slh’g

S

J=1,M,T=JT; . We number all elements of the set 7'

=1
the

- M
with indext =LK ,K =Y K;,

I=1

cross-cutting
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K; = +nm)(l+k;m), and put in correspondence to each

node x, of'the grid I, . the set of elements

PISCUShg' ey (Pl-’g)},

element

Ple

).P* € Pyl=1.M},

P _ {UT—I (Pl &
i,j
the set of indexes

l, D e phe 1 M
T, ={teT:r/ (By*)=x,.&" e P 1=1,M},
and function

L (x)— ZL (t;(x)), x € I} ,supp {L (x)} = P ,(6)
teT

k,
LPED) e POy B
Denote by FLN L the restriction operator from H"(T')into

the finite dimensional space VLN L and by FLN " — its restriction

to Hm(Fl) ie.
A= L () = @), ()
where rLK !'is the restriction operator from H™ (§;) into the

corresponding finite dimensional space VLK I I=1,M,and N,

is the number of nodes in the gridl), . .

The extraction operator fazv L from VN L into the linear

shell Uva of the system {L (x)}p LU NLCH’"(F)
,introduce by formula
(Pphup ) = zu L))t er . @®)
From Lemma 1 follows that i.e. approximations

N; ~Ng
(VL LapL

from estimate (5) we obtain

LN L) of the space H"' (') are convergent. Further

2
NN,

o Pl

u—p; ©

(DN
where0<t<oc<m+1,t<m, andpivlis a similar to (4)

extension operator from VN ! into H"™ (S7) ,constant C>0

does not depend on wand h= max {h(l)h(l)} .Thus, it is
1<IsM
proved

Lemma 2.Thereisarestrictionoperator

FLN L:H™"T)—> VN L suchthatapproximations

N, ~N
Y, tpptsm

valid the estimates (9).

NNL)of the space H"(I') are convergent and



III. COLLOCATION METHOD

Let us denote G'= R3\G and introduce in G and G the

Sobolev spaces [13]
H™(G)={ve L,(G):0%

g m} b
(G =ty e D(G): A+ 60y e 1o, la| < m} .

3. 2\1/2 3
where m>0,and r=(2x7)"" x=(x;,x,x3)ER”
i=l
Consider the next boundary value problem: to find

function
ve H{"\Ly = v e H™ N (GHUW™ (G-

(10)
v|rim =V Av(x)=0,xe G,G'}
satisfying condition
p=f.f e AT (11

In [14] was proved

Theorem 1. Problem (10)-(11) has one and only one
solution.

We will search a solution of the problem (10) - (11) in the
form of simple layer potential

v(x )——IMdF xeG,G'.
rle=of
The unknown potential density is determined from the
equation

(Au)(x):— %d — f(x),xel. (12)

Operator A is an isomorphism of H*(I") onto H*"(I)
[14]. Then from the Banach theorem follows the validity of
inequalities
Sl

al

() < Bl

(13)

in which constants ¢« and B, 0 <a, < f;, does not depend

onueH(T).

To simplify the presentation, we assume that for
approximation of unknown potential density u e H" (),
m >0, of equation (10) a system of linearly independent
functions {;};~; is chosen,U y is a linear shell of the system
{q’i}i]\il iy H" (D) >V, py :Vy — Uy are the restriction
and extraction operators. Denote by X the set of pairwise
different points belonging to the surface T’

Xy :{Xj}?/:],xj el',j=LN,

and introduce in H"™! (T) restriction operator
Sy H™ (I') > @ by formula
(sn) =10} (14)

in which
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Vietyes):|f(o|= mzﬂ /D) vj € Xy}, (15)

5(yj)={yel:|y-y|<s},
in particular p(y*,5(yj)) >0 for arbitrary y* eXy, y* Vs

j=LN.
If f e C('), then operator s, can be defined as usual
(snf);=fj),y;eXy, (16)

i.e. fj =Y, J =1,_N. It is easy to see that, with this choice of

operator Sy, a system of linear algebraic equations
Ajuy =syf, Ay =syApy., uy ey, (17)

implements the collocation method of solving the equation
(12). The set X is called a set of collocation points.

Denote Yy = {y It 7:1 andconsider the system of functions

ri()=7——=7, V; €Yy, j=LN.
[£-5]
From the choice of the set X, and conditions (15) follows

that the functions of system {rj(x)}jy:] are linearly

independent [15].
Define in L°(I)

functionals

1i(9) = [o(x)r;(x)
r

the family of linear continuous

dr, ,peL”(T),j=1LN.
Denote by Ker(/;) the zero subspace of functional /; in

L°(), ie. Ker(l;)={p € L”(') : 1;(¢) = 0} andsupposethat

N
Ky = ﬂKer(lj). The degeneracy of matrix A‘fv is
j=l

equivalent to the linear dependence of its rows or columns,

that is, the existence of such setsuNz{ai}i]\il eRY o

N N
2
By =B} eRY .Y a? >0, Y B7 >0, that

i=l j=1
[ (Za,(p,(x))r (x)dl, =0, j=LN, (18)
T i=l
or
Ico,(X)(Zﬁ, (X)), =0, i=LN. (19)

Jj=1
Implementatlon of equations (18), (19) is only possible if
Ky NUy # 0 .From this follows sufficient conditions for the

invertibility of matrix A% , which we formulate in the next
statement.



Lemma3. Let us the system of linearly independent

functions {(Di}i]\il is chosen for the approximate solution of

equation (12) and determined the set of collocation points
X (and, consequently, the set K ,; is defined). Then, if

KyNUy =0, (20)
then the matrix A(I:V of the system of collocation equations
(17) is non-degenerate for arbitrary N.

A similar result is obtained if the restriction operator Sy

is chosen in the form

(5w ), = %MJ F)r, @1)
andr; (x)= ! dFy =1 _N

mesé(yj)(s(y )|x y|
It is obvious that under conditions of Lemma 3 the
operator Af\/, where s, is defined according to (14)-(15) or

(21), or in the case of f e C(I') according to (16), is stable.

Consider a discrete analog of condition (20).Let us the
quadrature formula

Iqo(X)r (x)dT, = ZAjco(x ULCHR
=

(22)

x; eF,xj #x;,if j#1,
is used to calculate the integrals

I(/)(X)r (x)dl’

a(p(x)EUNa. I’Na

which is exact for integrals
[y ()T, ,p(x),y(x) €Ul .
r

Consider the system of functions

yi(x) = Za Pr (x) (23)

,k,i = l,N , of which we define from N
systems of linear algebraic equations

Za(l)wk(x _ri(xj)a Lj=LN.

the coefficients a! k

24)

Deﬁne the conditions under which the functions w;(x),

i= I,_N, are linearly independent From (23) we obtain that

ch'//l(x) = Z(ZC 1292 ))wk(X) =0

k=1i=1
if and only 1f

N ,
Yo =0,k=1LN. (25)
=1

Let us the set of colocation points X ={y j}jy:] cTl is

chosen in such a way that
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0<|xl~—yl~|<s,d<

xl-—yj‘,i,jzl,_N,jii,0<g<

where {x ;} 7:1 are the nodes of quadrature formula (22). Then

1 (x;) > %G(xj),
i=1,i#]
matrix Ry = {r;(x j)}f?/ j=tdue to  Hadamard  condition
isnondegenerateandfrom (24) weobtainthatvectors
a, = {a,(cj )} 7:1 , k= I,_N , arelinearlyindependent. Hence,
equality (25) holds if and only if ¢; =0, i=1,_N, ie. the

functions of system {'//i(x)}i]\il are linearly independent.

Now, ifthequadratureformula (22)
isusedtocalculatetheintegralsincoefficientsofmatrix A%,
insteadofthesystemofcollocationequations (14),

weactuallysolveasystemwithmatrix
"N N
A = oy ;)
r

where functions y;(x),i= I,_N, are defined by formulas (23)

and (24). The last matrix can be degenerate if and only if there
N

exists a nonzero element ¢(x)= Y a;p;(x) e Uy , orthogonal
i=l

to all w;(x),i =1,_N, which is impossible, since the system

{q/i(x)}i]\il forms a basis in the space Uy .

Let us the system of Lagrangian finite elements of the
form (6) is used to approximate the unknown potential density

ue H"() and Uy, is its linear shell. We choose the

operators 7y :H™(I) = Vy, and py, :Vy, »>Uy, inthe
form (7) and (8) respectively and determine the restriction
operator sy : H"*!(I) - @ in the form (14), (15). In this
case, the system

=fy, . Ay, =", 4Py, - I, =, S

implements the collocation method for solution of equation
(12). From Lax-Milgram lemma [16] follows that under

. c
(20) matrix ANL

c
ANLuNL

conditions is non-degenerate and,

accordingly, the definition of operator ¢y, in the form

:AﬁNLuNL is correct. Given the left side of

(13), the biectivity of  mapping
IN’NL :Vn, > Uy, , the expressions for norms in the spaces

qn, fy,
inequalities

Vy, and @y in the case U=H"(T), F=H""(T) and
equality QNL APNL“ =APNLu, we obtain the validity of

inequalities



(26)

AS, u H
Ny NL(D

anfor ], <
Ny, Ny

for arbitrary wy, €Vy, , in which ¢, does not depend on

uy, .Then from the inequalities (13) and (26), Lemmas2, 3,

and basic convergence theorem [17] we obtain the validity of
following

Theorem 2. For arbitrary f EHm+1(F), m=0,1,..., the
approximate solution u]%,L of equation (12) obtained by

collocation method under approximation of unknown potential
density by a system of functions constructed on the base of
Lagrangian finite elements of m-th degree and the choice of
collocation points that satisfies the condition (20) converges to
its exact solution, andthereisanestimate

C+p,/ _
“u < (1+ B, Ott)ho- t”f"y"*'(l")’ 27)

H'T  a
where 0<¢t<oc <m+1, t<m,and /4 is the maximum area of
the grid element onI" .

L
—uy,

IV. ERROR ESTIMATION OF APPROXIMATE SOLUTION OF THE
DIRICHLET PROBLEM FOR THE LAPLACE EQUATION

Denote

L

uy (»)
b= [ ve6.,
N; 4 Y

Tr |x—y|

and estimate the modulus of value
a

- @)
ox L

1 L o 1
— @) —uy V)—7—dly,
471'1‘[ Ny ox% |x—y| Y

xe G,G', a =0,1,..

Let us
xeR\FeR:[¥-)|<8,yel}. (28)
Using Holder inequality and (24), we obtain
o“ L mesl’ L
I _ < 77 gy —
SRR ey TR (29)

xe G,G', a=0,1,..
Then from inequalities (27), (29) and Theorem 2 follow
the validity of the next statement.

Theorem3. For arbitrary f EHm+1(F), m=0,1,..., an

approximate solution of the problem (10), (11) obtained by
collocation method under approximation of unknown potential
density by systems of functions constructed on the basis of
Lagrangian finite elements of the m-th degree, converges to its
exact solution, and there is an estimate

C (1+ By L ag)h™

am5a+l

0% I
(0=, () [y
xe G,G', a=0,1,..
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The paper describes the conditions and evaluations of
convergence of collocation method for solution of Fredholm
integral equation of the first kind for the simple layer potential
in case of closed boundary surface in a three-dimensional
space. Approximation of potential density was performed
using Lagrangian finite elements of various orders on
rectangular grids constructed in the desired function definition
domain. Estimations were obtained for the error of
approximate solution of Dirichlet problem for Laplace
equation that is equivalent to the integral equation for the
simple layer potential. The approach proposed can be used to
define convergence of collocation method for solving potential
theory integral equations that are equivalent to the boundary
value problems for equations of mathematical physics and
other types of finite elements of various orders, constructed on
both rectangular and triangular grids in desired potential
density definition domain.
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