

48

Some Aspects of Functional Programming Languages
Application in the Parallelization Problems

Orest Geiko
Department of Computer Science

Vasyl Stefanyk Precarpathian
National University

Ivano-Frankivsk, Ukraine
ifgo69@gmail.com

Artur Martsinkovskyi
Department of Computer Science

Vasyl Stefanyk Precarpathian
National University

Ivano-Frankivsk, Ukraine
arthurmarz.learn@gmail.com

Деякі Аспекти Використання Функціональних
Мов Програмування в Задачах Паралелізації

Oрест Гейко
кафедра інформатики

Прикарпатський національний університет
імені Василя Стефаника

Івано-Франківськ, Україна
ifgo69@gmail.com

Артур Марцінковський
кафедра інформатики

Прикарпатський національний університет
імені Василя Стефаника

Івано-Франківськ, Україна
arthurmarz.learn@gmail.com

Abstract—This article is a consideration of some aspects of

functional programming, that are used for parallel computation
and creation of asynchronous applications on the basis of
referential transparency, pure functions; persistent data
structures and data immutability. This is a review of features
that functional algoirthms like Map/Reduce posess in the
usecases of the parallel data processing of huge datasets.

Анотація—В статті розглянуто деякі аспекти
функціонального програмування, які використовуються для
паралелізації обчислень та формування асинхронних
додатків на основі прозорості посилань, чистих функцій;
персистентних структури даних та іммутабельністі даних.
Розглянуто особливості функціональних алгоритмів для
паралельної обробки гігантських наборів даних, таких як
Map/Reduce.

Keywords—distributed programming, functional programming,
execution in parallel.
Ключові слова—дистрибутоване програмування, функціона-
льне програмування, паралелізм.

I. INTRODUCTION
From the 80-s years of XX-th century the orders of

growth of speed of the hardware like processors and RAM[1]
of information systems have allowed us to use substandard
software that lacked optimisation. The flaws of software were
neglected due to the fast growth of the computational power.
The scale of data processed was not very huge. the nature of
the tasks that computers had to perform was far from complex

either permissible in the means of time of execution. Recent
development and comprehensive nature of computer networks
caused rapid change in the scale of data that needed to be
transmitted, stored and processed. At the same time, orders of
growth for capabilities of computers are not as high as the
need for them, that requires multithreading and clasterization
efforts to be able to process data streams coming in.[2] This
makes parallel execution a requirement for any modern
system. Parallel execution can be regarded as a powerful tool
for making data processing more efficient, but it also puts
some additional requirements and brings up issues that have
never been a problem in sequential programming. These
problems mostly consist of modification and access issues that
can come to life in any system that processes and stores data
in parallel. Functional programming and algorithms are the
efficient way to handle such issues.

II. RESEARCH RELEVANCE
Usual imperative paradigm, as well as object-oriented

paradigm is not very suitable for the distributed data
processing. Programs in these paradigms are sequential and
have side effects, that can affect on the process of execution
unexpectedly. On the other hand, functional programs when
composed in the right fashion, can make paralLelization much
easier. There is a multitude of features that are unique to the
functional paradigm: immutability of data, pure functions,
referential transparency, recursive algorithms, functors,
convolutions and higher order functions, persistent data

49

structures. All of these elements of functional programming let
us to avoid some classes of errors that are usual for parallel
execution, like deadlocks, data corruption on simultaneous
write, race conditions. Also, functional algorithms are better at
scaling and distribution amongst multiple computers. The
main elements of functional programming that provide us with
advanced parallelization techniques are[2]:

● Pure functions. Pure functions are functions that do
not have IO side effects and memory(the are
stateless, which means that they don’t have any state
and return same values for different calls with same
arguments). They allow reinterpretations and
optimizations on the compile(interpreter processing)
stage. The result of pure function call can be cached
in a hash table, allowing substantial speed-up for
recursive algorithms. Also, such functions can be
considered thread-safe.

● Referential transparency. Referential transparency is
one of the fundamental principles of the functional
programming; only referentially transparent functions
can be memoized(transformed into the equivalent
functions that use cached results). Some languages
provide the programmer with tools to guarantee this
structure. Some other on the other hand require
referential transparency in all functions. Due to the
fact that this features requires same output for same
input in any time, the referentially transparent
expression is determined by the definition. This
allows the programmer to avoid some extra
calculations that frequently appear in the flow of
parallel programming.[6]

● Persistent data structures. Persistent data structures
are kind of data structures that retain access to the
previous versions. If we have the sequence of p
elements and we have to change the element n in it,
we create the new version of the structure that is
different from the previous only be the value of the n-
th element. As a result, we will have two versions of
the sequence with access to each one of them. This
technique lets the programmer keep the data structure
fast an immutable at the same time sparing memory
by reusing it.

● Functors. Any class or data type, that stores values
and implements method map is called a functor.
Also, functor should return the collection with the
same type to the collection passed to it.[7] For
example, array is a functor, because an array is data
structure that stores values and implements method
map that allows us to apply the function against the
values it stores. A benefit from such approach to the
parallelization lies in the fact that transformation of
the elements is independent which means that the
sequence can be divided into ranges each of which
would be transformed in parallel.

● Monads. The main application of monads in the
functional programming is the isolation of the IO and
stateful behaviour. The principle of monad

application is the fact that function that don’t create
the side effect itself, it can create and can be used
later. But IO and statefullness are not the only
usecases for monads. They are useful when the
programmer wants to describe the calculations in
purely functional manner, at the same time executing
other calculations in parallel.[4] Thus, two main
usecases of monads are sequential calculations and
handling of the inherently side-effect generated data.

Fig 1. Representation of the work of persistent data structures (hash tables,

vectors, lists, etc.)

III. PRACTICAL IMPLEMENTATION OF
FUNCTIONAL PROGRAMMING IN PARALLELIZATION

The most famous use of the ideas of functional
programming in parallel for relatively fast analysis and
processing of huge amounts of data is the Google MapReduce
algorithm.

This algorithm consists of two successive steps: the
clustering of functors to an array of data and subsequent
convolution, map steps and reduces accordingly (there can be
more than one functor, for example, on Figure 2. there are
three of them).

In the map step, a conversion is applied to each
element of an array of input data that changes its contents, but
retains the number of elements. In the case of distributed
architecture, for the map step, the host computer receives the
input data array, marks it and distributes it between its nodes
by specifying the transformation. This process can take place
several times before the convolution.

In the reduce step, a convolution of pre-processed
data occurs. The main node receives responses from the
working units and, based on them, forms the result - a solution
to the problem that was initially formed.

The advantage of this algorithm is the possibility of
its almost unlimited scaling, the absence of a global state and

50

the possibility of an iterative data flow with multiple
transformations and reductions, of which even the hierarchical
system can be built [4].

Fig 2. Listing an application of the Map Reduce algorithm for counting words

in incoming texts with the possibility of parellisation on Clojure

(require '[clojure.string :as str])

;; Function for processing nodes on the Map step

;; для першочергової фільтрації вхідних даних.

(defn word-filter[words]

 (filter #(re-matches #"\w*" %) words))

;; Function that is used by processing nodes on
the Map step

;; for data transformation into indexed original
form

(defn sanitize-map[words]

 (map #(.toLowerCase %) words))

;; Function for Reduce step that is used for
data array convolution in the occurence hashmap
form.

(defn count-reduce[words]

 (reduce #(assoc %1 %2 (inc (%1 %2 0)))

 {}

 words))

;; Reduce step function for the final merge and
accumulation of values of the first-step
convolutions

(defn merge-count-reduce[occurence-maps]

 (reduce #(merge-with + %1 %2)

 (hash-map)

 occurence-maps))

(defn map-reduce[documents]

 (merge-count-reduce

 (map

 (comp

 count-reduce

 sanitize-map

 word-filter) documents)))

(def docs [["a" "." "c"] ["mine" "token" "is"
"here" "a"]])

(map-reduce docs)

CONCLUSION

Functional programming is an effective paradigm for
software development, which is becoming more and more
important with the gradual obsoletion of the Moore’s law and
a significant increase in the number of processed data.
Pipelining, which can be achieved with state-of-the-art
functionality, the ability to cache and memorize the results of
pure functions, the advantage of persistent data structures that
occupy significantly less memory and the unchangeability of
data with the isolation of the data in the individual elements of
the program allows you to develop faster and less prone to
program mistakes that allow you to avoid problems that are
traditionally encountered during parallelization.[3] The
functional approach allows you to create abstractions based on
data and perception of functions in the form of data, which
contributes to abstraction and allows you to use the
mathematical apparatus organically when solving practical
problems.

However, on the other hand, functional programming
is now faced with a number of problems that make it difficult
to use in the industry from a commercial point of view. First
of all, this is an inadequate qualification of most programmers
who traditionally use the imperative paradigm of
programming and its derivatives in the form of object-oriented
languages. Also, functional programming requires a lot of
training in connection with many fundamentally new concepts
and theoretical constructions that take time to assimilate.
Compilers and interceptors of such languages are considerably
more complex because they require the implementation of
different calculation procedures simultaneously, the
implementation of high-speed garbage collector (GC) and the
distribution of clean and "contaminated" data zones.[8]

Another problem with functional programming is the
complexity of simulating simulations and fast-changing
systems that make lazy computing and immutability a burden
rather than an advantage in connection with the constant

51

change of contexts and the complex indivisible
interconnections of such systems [5,6].

In general, the prospect of using functional
programming widely in the industry and academic
environment is likely to be the gradual incorporation of the
mature and appropriate elements of functional programming in
more common programming development languages, as well
as the formation of the appropriate ecosystems and
communities of purely functional programmers with respect to
tasks that are most in line with the rules. and points of benefit
from the use of this type of language.

REFERENCES
[1] C. Okasaki ”Purely Functional Data Structures” Cambridge University

Press 1998
[2] G. Cousineau “The Functional Approach to Programming” Cambridge

University Press 1998
[3] T. VanDrunen “Discrete Mathematics and Functional Programming”

Paperback – October 16, 2012
[4] G. Michaelson “An Introduction to Functional Programming Through

Lambda Calculus (Dover Books on Mathematics)” Copyright, 1989
[5] B. Jay “Pattern Calculus: Computing with Functions and Structures”

Brodway NSW 2007
[6] G. E. Revesz “Lambda-calculus, Combinators and Functional

Programming (Cambridge Tracts in Theoretical Computer Science)”
Cambridge University Press 1998

[7] Ben Vandgrift “Clojure Applied. From practice to practioneer”
Pragmatic Programmer Bookshelf 2015

[8] Michael Linn Functional programming patterns in Scala and Clojure
Pragmatic Programmer Bookshelf 2013

