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Abstract—The mathematical model of mass transfer processes
with taken into consideration of a local medium structure and
cascade decay of admixture particles migrating in two ways is
constructed. For the specific scheme of cascade, the balance
relations of mass of the system components are formulated, the
linear state equations and kinetic relationships are obtained. The
heterodiffusion processes of admixture with its cascade decay in a
body with two migration ways, accompanied by mass exchange
between states, are investigated. For the case of unramified cascade
decay, associated initial-boundary value heterodiffusion problems
by cascade kind, when the problem solutions at one stage are
sources on the next, are formulated. Solutions of the problems are
obtained by iterative procedure with using Green functions. The
expressions for diffusion fluxes of migrating admixture substances
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through the given section of the body and amount of decaying
substances that passed through the layer in a certain time interval.

Anomauyia—IloGynoBana MaTeMaTH4YHa MOJETL MpoNeECiB Ma-
comnepeHeceHHs1 JOMIIIKOBUX PE4YOBHH 3 YPaXyBaHHSM JIOKAJIbHOI
CTPYKTYPH CePeIOBHIIA TA KACKATHOI0 PO3NAAy JOMIIIKOBHUX Yac-
THHOK, sIKi MIrpyloTh ABoMa nuigxaMu. /Ui KOHKpPeTHOI cxeMH
KACKAHOr0 po3nany cgopMyJboBaHO 0aJaHCOBI CIIIBBIIHOLICHHS
MAacH KOMIIOHEHT CHCTEMH, OTPMMAHO JIiHiifHi PiBHSIHHA CTaHy Ta
KiHeTH4Hi cniBBiTHOMIEHHA. [locimimxeno npouecn rerepoaudysii
JAOMIIIOK 32 iX KaCKa/JIHOI'0 PO3Majgy B TiJi 3 JBOMA NLIAXaMH Mir-
pauii, 10 CyIPOBOIKYIOThCSI MaCOOOMiHOM Mixk craHamu. /s BU-
MKy HepOo3rajdy:KeHOro KAacKaJHoOro posmaay cgopmy/boBaHi
3B’s13aHi KpaifoBi 3ama4i rerepoaudysii KaCKagHOro THIY, KOJIH
PO3B’AI3KH 3a7a4i HA OJJHOMY eTami € JyKepeJIaMH HA HACTYITHOMY.



Po3p’si3ku 3a7a4 moOynoBaHi 3a iTepaniiiHOI0 MpoLEaypPoOIO 3 BH-
KopuctanasiM pynkuiii I'pina. Orpumano dopmyim mas audy-
3iHAX MOTOKIB MIirpyl04mx JOMIiIIKOBHX PEYOBHH Yepes 3aJaHHii
nepepis Tija Ta KiJIbKOCTI PO3NaJHAX PEeYOBHH, 10 NMPOHILIH Ye-
pe3 map, 3a NeBHUIi YacoBHii iHTEpBaJL.
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Mathematical models of admixture heterodiffusion in two
ways in media where migrating particles occur locally in dif-
ferent physical states and differ substantially by their mobilities
[1-3], are used for describing the processes of mass transfer in
polycrystals, fine-grained systems of different nature, porous
fluid-saturated media, ets. For example, a significant numbers
of metals and allows used in engineering are polycrystals.
Their structures are characterized by availability of
dislocations, grain boundaries and internal boundaries of
interphases [4].

INTRODUCTION

An important feature of the processes of heterodiffusion of
technogenic substances is their natural decay (degradation),
which occur with the same intensity in each of physically
different states. In some cases, the substance generated in the
process of decay is already less toxic and its redistribution is
not of interest for further study. At the same time the generated
substance can decay and generate new substance which
migrates in two ways, is sorbed-desorbed and decay. Such a
process is called cascade decay and can occur as a result of
radioactive decay or chemical reactions (in particular, chain
reactions), for example [5]:

137Te 1371 137Xe 137CS 138CS 138Ba

Intheworkthemathematicalmodelotheterodiffusionofadmixt
ureparticlesintwowaysundertheircascadedecayisconstructed,
associated initial-boundary value heterodiffusion problems by
cascade kind, when the problem solutions at one stage are
sources on the next, are formulated. The solutions of the
problems are found and on this basis software is designed.

II. MATHEMATICAL MODEL

A. Object of inquiry

Let decaying particles of one chemical kind migrate in a
body with two migration ways and mass exchange between
states [1, 3, 6, 7]. Moreover, the substances that formed as a

result of decay can also decay. We accept that the body K"
(discrete set of material particles) is a multicomponent solid
solution. We assume interacting discrete sets of material par-

ticles Kj«(o) that form the base of the body ( j = 0) and admix-
ture particles in two dedicated states ( j =1;2 ) as thermodyna-

mical components of the system. When the substance Kj«(o) in

the state j=1;2 decays, the particles of other substances K’;«(l)
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and Kj(N ) are formed, and the particles Kj(N ) do not decay yet
(fig. 1). In turn, the particles of admixture Kj(l) decay and gene-
rate the particles of substance Kj«(z) and non-decaying (harm-

less) substances, which be attributed to Kj(N ) and so on, while
we obtain only non-decaying admixture substances in the (N —1
)-th step.

We juxtapose the continuums KS«” (i :(),_N, j= (),_2) to
each component of the body (subsets of particles KS(O) that
forms the skeleton and to the particles of decaying substance in
different states Kj«(o) as well as the particles that formed as a

result of decay Kj«m (j=1;2,i=LN)).

B. Balance relations

Asreferencerelationsofthemodelweassumethebalanceequati
onsformassesofeachcomponentofthesystem.
Ifthechangeinmassofthecomponentoccursduetomassfluxesandi
nternalsources [8], then the equations of balance of mass of the
component i take place

(o5 v

where py) arcthedensitiesofthesystemcomponents,

ap(l)
o

(OO
j

S(0)
Vi
isthevelocitiesofmotionofmaterialpointsofthecontinuums K(’)

(

V isHamilton’snabla-operator; w; Dis the density of internal

source (or sink) of component ij ; the dot is the scalar product

[7].

Sincewehaveassumedthattheprocessesofsorption-

desorptionanddecayofadmixturearetreatedassource (sink)
ofthecomponent,
theninthegeneralcasethecapacityofmassproduct w(’)
canbepresentedasasum

(z) Zm(1)+w(1) (i=0,N, :0_) )

k¢]

where (o 1sthecapamtyofmassproductofthecomponent i

mthestate j inconnectionwithitstransitionfromthecontinuum

Kgf) (’) is the capacityofmassproductofthecomponent jj due

to decay of particles of the component i—1 (i=1,N, j=1,2
). Then we have

W =0 (v)), ZZ—@ = 3)

j=li=1



decaying admixture substance
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sorption decaying admixture substance

Y
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Fig. 1. Scheme of cascade decay of admixture components of the thermodynamic system and sorption-desorption processes

including

0 =0 (), off =—f) (Vi,j.k), szy,g:owi).

j=0k=0

Let values of the body density p = Z pg.i) and velocity v
i,
introduced by the following equation

2 N )
7= 220 e @
j=0i=0

is attributed to the points of the continuum of mass centres
K. . We add Eq.(1) by all indexes i and ;.
Using the expressions (2) and (4) we obtain

03 (1)

V. zzp] )
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Usingthatthetotalderivationwithrespecttotimeis

d/dt = 6/6t+v -V , the Eq.(5) can be written as
dp =
_F _ v 6
ar (6)

Writeequationofbalanceformassofcomponent j per the total
derivative with respect to time

LI 5 (p05)-9- (005 )-pOF 5+

dt
where C‘E’A) = pgi)/p is the

mass concentration of component satisfying the condition of
normalization

Takeintoaccountthat p(’) =Cj )

()

Thenweobtain



dp® dc -
@® =p—L- +C(’) dp +C§-’)pV'\7=
dr dr e

because the relation (6) is valid. As a result we obtain equation

of balance of concentration of the component i in the state ;

0) 0
el SNG <
J

p

dc(l)

b TP )
Thequantity J(’) = p(l)( (0 ‘7)
isthediffusionfluxofthecomponent jj , introduced with respect

to the points of the continuum K, .

Notethatifweusethenormalizationcondition ),
thanbalanceequationcanbewrittenas
ach _ —
p dt] = VJEZ)'FW(]l)a :O = ,2, (8)
2 N
eV =1-33c. ©9)

j=1i=0

C. Kinetic equations and state equetions
Ifwehavetheaggregateofconjugatethermodynamicforcesand

Y(l) (@)
7@

®
ox( l
owy,

()
, (10)
x5 ),

ox®

correspondingthermodynamicfluxes X ;i ) J ;i ),

L = (
2D = (

where )?;i) is vector thermidynamic force conjugated to

here the linear kinetic relations are

2 N
P = DL

m=1n=0

24D x D

km<*m >

o0 =33

m=11=1

vector diffusion flux J ;i ), namely [7]

X =—v(p§’> +w<’>), (11)
X ,(,’1) isthermodynamicforceconjugatedtothermodynamicflux
ol u(’) isthechemicalpotentialofthecomponent ij , \VS’) is

potential energy of mass unit of component ; in the state ;.

1 N
e —

thetakingintoaccounttheconditions (3), whichthecapacities of
(i)

Solongas \Vj(-

mass products w;’, we obtain

2

N
33y Ou = szwm -

Jj=0i=0 Jj=0i=0

279

Letustakeintoaccountonlytheprocessesoftransitionsofadmix
tureparticlesbetweentwowaysofmigration ') (i = LN), i
thecapacitiesofmassproductsdue to the processes of sorption-

desorption ) andw})  are  non-zero.  Thereto,

thecapacitiesofmassproducts W](i) for the componentsi =1, N

obey the conditions

(iN )

—(l) _Wj(u l)+w(u+l)+w W](ll) =0,
w}”'” =-w™ (=N, j=12),
W](«iiil) =0for /=2, W](ii) =0 for Vi; Wj(iN) = —Wj-(Ni),
—(N —~—(Ni ~_(iN) . —( ) .
wit = 2w == W W =0 (j=0);
i=1 izl
O = (i =TV ).

Here W](ii D isthecapacitiesofiassproductsofsubstance K? )
in j -thstateatthe i -
thstageofcascadedecayduetodecayofsubstance Kgi b,
5 (N)
Wi

—(ii+1
i,

are thecapacities of mass sink of substance Kg«i) at the
stage i +1and the last stage of decayi= N in the j-thway of
migration.

(1)}

The first term of the right-hand side of (12) can be
modified to the form

Then we have

ZZH(’)

j=1i=0

2 N
IR LD B
j=1i=0

SRR (i), () (i) ) (D)
IRRITEESD) (1 R Jofd
Jj=1i=0k=1

Denote o\” = oY) (i=,LN)
arethescalarmassflowscharacterizingmassexchangebetweenstat
€s; x 0

5 1

arethescalarthermodynamicforcesconjugatedtocorrespondingm

(@)

assflows "’ , namely

@ _

XD =pd - (i=0.N). (13)

We present thesecondtermoftheright-handsideof (12) as

Zu(z) 0 ‘—NZ(M G NZ(M(N)
J J J

i=1 i=l1

(i+1)
J

O]

— (@)

N
nd ‘(z )



(ih) j(,iN) (i,k =1,N —1) are scalar

mass flows characterizing decay of admixture particles and we

Where we assume thatw

consider them known; X(’) = u(’”) uS’), X(N’) = u(N) uS’)

(i= l,N , j=1,2) are scalar quantities conjugated to
Wio M)

corresponding mass flows w; wi

AsaconsequenceofOnsager’sconditionsofreciprocity

(91,

thecoefficients L(j’,ﬁ), A have to satisfy the conditions
L(},'f,) =L(,,'g), AMD =900 " and due to the second low of

thermodynamics they obey such restrictions: L(j?) ,M,ﬁ;’) >0,

LIDL > (L5 + L) 4, 25000 > 0D 1202 [4.

Thelinearstateequationsis

(@)
jo

p =p +Zd§,?c,<;> : (14)
Here u(’)
isthechemicalpotentialofpuresubstanceofthecomponent i ;

d; 0 = (6u(’) / 6(:?) )0 are the material characteristics of the
system.

D. Key sets of model equations
functions,
centrationofadmixturecomponents cﬁ«i ) = C;i ) _ C;i )0

Assolving wechoosethederivationofcon-

fromthevaluesinthereferencestate C;i 0

whichcorrespondswiththenaturalstateofunlimitedbodywithoute
xternalinfluence.

Ifwesubstitutetheexpressionsforthermodynamicforces (11),
(13) intokineticequationsforthethermodynamicfluxes (10), then
we obtain

Y

m=1n=0

(n)

N
il ! i
=2 -ui?).
/=0

Weexpressthechemicalpotentialspersolvingfunctionsusingt
helinearstateequations (14).
Acceptthatthematerialcharacteristicsareindependentoncoordina
tes. Then

JP = —Z ZL Wa{Ivel

m=1n=0

of) =3 DD + 7D + 1. (15)

1=0
whereT =" T = i -2l
aretheconcentrativecoefficientsofintensityoftheprocessesofinte
rtransitionofparticlesbetweenstates;
M = D (k(,ill) -9 )p(zlo) are the model constants.
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Sumoftermsintheexpression  (15)  oftype K(,é{)c(l)
+ WD) + M is  describingthe mass product of the
component of the thermodynamic system.

Fromthebeginningwehaveassumedchangeofadmixturemasscan
occuronlyduetoparticlestransitionsbetweenstatesandduetodeca

) =0

Ifwesubstitutetheexpressionsforthethermodynamicfluxesof
admixture (15)
intoequationofbalanceofcomponentsconcentration (8), then we
obtain the equations of heterodiffusion in the form
for i=0

yofsubstance. Thatis M,((”

dei” _ & [ Sh pongm |43 Frono 4 3000
n n
a 2. 2. Ve, +Z[7“11 o +hp 6 ]_
m=1n=0 =0
_x(ll)cl(o) —X(]ON)C](O) ,
def” &L ome | SFon.a) L on 0
n n
P d ==V ZZDZm vcm _Z[k” € +k]2 © ]+
t m=1n=0 =0

N -
(7 (00) () | 30D (D) |_ (D) .(0) _75(0N) (0) .
+Z[?\.21 o’ + A% ]—kz ey =hy ey

=0
for i=1,N -1
def” - (N W) (1), 7l
L -v. ZZD"’)VC") +Z[w> +aDe >]
dt m=1n=0
£ _ x(””c(") R0
def?” (NS i) (1), 7l (I
pda . ZZDM)V"") Z[W RN
dt m=1n=0

3 DA + T | TP R T

1=0
for i=N
def o | %h g
n n
P =V > Dy"vey |+
m=1n=0
N _ Nl
S R AW | T
1=0 i=0
det™ o |8 g | B o, 3 0
n n
p ) ==V ZZDZm Ve, _Z[kn a’+hp e ]+
! m=1n=0 =0
G o L on o], 5
+ 3 0 £ TGO [+ TR (16)
1=0 i=0
Here D(’”) = L(j’,':l)d ) arethekineticcoefficientsofdiffusion;

%}71), ?N\.(;:”), K(;N) are constants defining the decay process.
Takeintoconsiderationthatadmixtureofthesameche-

micalkinddecaysequallyindifferentstates (fig. 1), i.e. e =K(;),

7:»(”]) i)

) —N)
=1, =h;.

Alsotakeintoaccountonlytheprocessesofdiffusionandsorption-
desorptionofparticlesofonechemicalkind.



Alsoweconsiderthatchemicalreactionsthatledtodecayofsubstan
ceareirreversible. And we assume independence of the model
coefficients on coordinates, neglect the convective term, and
then the key model of heterodiffusion in two ways under
cascade decay of migrating substances (16) takes the form

for i=0

e _ _ _
—Ca‘ =D VA + DY AL — Ve +
t
KOO 300 _FON O
acy” (0 0) , (0 0) , 77(0) (0
—62 =DPA” + DY A + Ve
t
_];2(0)650) _X(g)cgo) —7»(2()N)c§0) :
fori=1,N-1
ocHw .o
—L=DPAc” + DYAS — kP ef? +
ot
£ RO R 500 TN 0
ol _—
—2-=DA? + DYACY + kel -
ot
LR DD 500 50,
fori=N
0t _ S AN L B AN _ E) ()
—— =D 'Ac;” + Dy Ay =k g
ot
SR L M0
i=0
ocs™ T A LN L N A LN L T(N) (N
2 = D{VACN) + DAY + kM) —
ot
MM + 3 (17)
i=0
Here D'\) =D /p (j,m=12, i=0,N)
arethecoefficientsofdiffusion; k@ =-a(2 /p, £?=2D /o

arethecoefficientsofintensity of the processes of particles
transitions between states.
Thesetsotheterodiffusionequations(17) needtobesupp-
lementedbytheequationforfindingtheconcentrationofthemateria
Iparticles(8) as well as the equation of continuity (6).

III. INITIAL-BOUNDARY VALUE HETERODIFFUSION PROBLEMS OF
CASCADE KIND|

Forone-
dimensionalinspatialcoordinatecaseinthenaturaldimensionlessf
orm [10]
heterodiffusionintwowaysundercascadedecayofmigrationpartic
lesisdescribedbythefollowingsetsofpartialdifferentialequations
atdifferentstagesofcascadedecay:
fori=0
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ac(o) 620(0) 620(0)
L L G
or pls
ac(o) 620(0) 620(0)
62 —d" a&_,lz +d© 6&22 +acf” —aPcl¥ 5(18)
T
fori=1,N -1
oc 0 c(’) o2l ) .
a1 :d(z) L d(z) 2 (z) (z) +111(12)C§1)+a§f]_1)61(1_1),
T
oct) 0 c(’) o 02
62 :d(l) 622 +d® é +a(l)cl(l)
T
—af)el) +al Vel (18b)
fori=N
(N) 2 (N
G _gmoa | g O’ wm
o 0 2 o 11

FaMe | Z e

i=0
oy @™ @S
=d, s—+d " —S—+a3 o -
ot o/
N-l
ap 'V + Y e (18)
i=0
where déi ) dD arethereducedcoefficientsofdiffusionofsubstance
Ky) (i=0,N) ati -thstepofdecayinstates j =1and 2, dl(i),
dé") arethereducedcrossedcoefficientsofdiffusion [71;

a = (k0 3D 1200k D) = (10 + &9 3GV 290 )40
01(12) kg)/kéo) , i _ kl(“/kéo) : ag‘;l) 27\(;—1)/1{50)
isthecoefficientofintensityofdecayof Kyfl) (i= I,_N ,j=12),
ot

decayingsubstancethathasbeengeneratedthroughdecayatthe i -
thsteng?) (i=0,N-1,j=1;2); kl(i), kéi) are the coefficients

isthecoefficientdeterminingpartofnon-

of intensity of the processes of transitions between states; K(j’:fl),

%}*” , K(;N ) are the constants determining the decay process.

Insetsofequations(18a)-
(18c)wehaveusedthedimensionlessvariables t = £{%t ;

/2 - . . .
&= (kéo) / Dl(?)) x, wheretistime, xisthespatialcoordinate;
kéo) isthecoefficientofintensityoftransitionsofparticlesof K
from the second state into the first one at zero stage of decay;
D is the coefficient of diffusion of substance K(” in quick
i=1,N,

migration way j=1. Furtherconsider d(()i) < dl(i) ,

d¥ =1.



Assumethatattheinitialmomentadmixtureswereabsentintheb
ody, namely

(&0 =’ _ =0, i=0.N, (90
T= T=
for T > 0 onthebodysurface & = 0
itiskepttheconstantvalueoftotalconcentration ¢, of ~ substance

K©, which is distributed among different migration ways for
i=0 as follows

o €|, (202)

— (0) —
=ac . =(1-a)c,
0 0> ¢ (1) £=0 ( )Co

where o (0<a<])
istheparameterdeterminingthepartofadmixturethatcamefromthe
bodysurfaceintothequickway.

Fori=1,..., N weassumezeroboundaryconditionatthe

toplayersurface:

€, =0, 'Enf_ =0, i=LN. Q0b)

Weassumethattheparticlesconcentrationsatallstagesofdecay
equalzeroat “bottom” boundaryofthebody,i.e.

4", = Eo), =0, i=0N. (o)

Atzerostageofdecaythesolutionsofheterodiffusionequations
(18a) withinitial (19) andboundary(20a),
(20b)conditionsarefoundusingintegraltransformation. Then we
obtain
concentrationofdecayingadmixtureinquickmigrationway

@’ |, b, &) g5 b |sinty)n
Co ce & ] X sinmx;
B 5]+£ sin(mt— y)x, _ii siny,& 5
X2 sin 1ur, €0 121 V(81— 52)

x{(asl + P +%Je“"T —((;Ls2 + P +%Jes”} , (21a)
1 2

concentrationofdecayingadmixtureinslowmigrationway

Gwd) |, bl &) g b |sinmosm

Co ce €o > x ) sinmy
|~ 1;_2 sin(m—y)x, | 2 <~ siny,§ y

(a2+x2J sin T, 1 &O;yn(sl_SZ)

xﬁ(l—a)sl +pl +&j ((l—a)sz +pl +&j } (21b)

51 S

totalconcentrationofdecayingsubstance ¢ = 01(0) + cgo)
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e
o ce g X sin 7x,

5+£ sin(m—y)x, | 2 < sinp,§
X2 sin 7ux, €0 o1 Vals1 —572)

><|:(Sl + D +%Jes'T —(sz + D +%jeszr} , (2lo)
I 2

1
where B=———, x, =l
d*—ded T 2

X

t

o |
QN|&I.\)

—4e |, a=a,+a,,

2
b=b+by, py=p+p (I1=12), a;= (d“’)a +dVo )&2’
0

0) ©0)

0
—0hap o

—O4dr

2
= ~ T 0 T 0
b =oya5, a =a_2(0‘2 +0c]d§ )), b, :oczal(l)

0

e=a®ad —

0 0) 7(0 0) (0
(d( ) _d 0! )) d0a

4

0
7'[2

d=a +a0d® + +d0a +dVad V=

81,2 =—m/2iv(m/2)2 M M ==), (d(0)+1)+a(0) +al((1));
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Note that for the model of heterodiffusion of decaying
substance the asymptotic summand of the obtained solutions
are essentially non-linear and consist of various combinations
of relation of type sin((n— y)x)/sinnx . With that each of
such relations is less than 1. Also note that the linear parts of
the asymptotic summands of analogical problem heterodiffu-
sion of non-decaying substance, i.e. 1-§/&, , are proportional
to the coefficient determining the part of admixture that came
from the boundary into the corresponding migration way ( o,
1-a and 1). At the same time taking into consideration decay
of migrating substance leads to the appearance of certain
“allowance” in such coefficients (b, /ce, by Jce and b/ce).
Take into account that these “allowances” are nonnegative
then linear parts of asymptotes of function (4) are not larger
the similar terms of concentrations of non-decaying
substances, and in each state separately.

For the other stages of cascade decay i =1, N —1 solutions

of the initial-boundary value problems are presented per
corresponding Green functions, considering admixture decay
at the previous stage of cascade as mass source at the step i :



1 &

i i— i ' (i ' P70 s 1.~ 22
v =al '>HG;>(&,a;r,r)c; D, e, j =12
00

)

Here G;i) (t,7;€,€") areGreenfunctionsoftheproblems

(18b), (19), (20b), (20c) fori =1, N —1.

Forthecaseof i = N (non-decayingadmixture) the process
of heterodiffusion is described by the initial-boundary value
problem(18c), (19), (20b) and (20c). Its solutions is also
presented in terms of Green functions by analogue of the

formula (22) fori =1, N — 1, namely

T &) N-1
M= [Ty dVe (e e, j=1,2.
00 i=0
(23)
where G;N)(ﬁ,ﬁ';r,r') (j=1,2) are Green functions of the

problem (18¢), (19), (20b) and (20c).

Consequently determination of concentrations at each stage
i=0,.,N-1 by the formulaec (21) and (22) with account
expressions for Green functions we find concentrations of non-
decaying particles under cascade decay of admixtures.

The analytical form of the obtained concentrations allows
au to find expressions for the mass fluxes of decaying
substances at different stages of cascade decay through the
surface & =&., where 0< &, <& . Proceeding from the linear

kinetic relations [11], mass fluxes are determined in the natural
dimensionless variables such as

:  ocl” - pee
J,E;)(r) = _W d(()l) Oc; a(;» T) + d](,) oc; aEEE_” T)

b

£=&-

283

) N (@) N (@) .

SO @) = k00| g9 €D y0 02 G

10 o0&
&=«
(24)
and the total flux through the surface § = &.

JO =D 4O 25
@=J|,_, +4] 5)

If we have obtained the diffusion fluxes of decaying
substances then we can find the function [10]

Tx
oy = I JO(de, i=0,N, (26)
0

whichdeterminesquantitiesofdecayingsubstances Q(()i (1),
thatpassedthroughthesurface & = €, (thebottombodyboundary)

over time-interval [0;1.].

IV. ARCHITECTURE OF PROGRAM COMPLEX FOR
HETERODIFFUSION MODEL

On the basis of the formulae (21), (22), (23)for admixture
concentrations and corresponding formulae for mass fluxes (24),
(25) and quantities of decaying and non-decaying admixture
components that passed through the bottom layer surface (26),
software has been designed for simulation of mass transfer
processes in a body with two migration way that been
accompanied sorption-desorption processes and cascade decay
of admixtures particles. Architecture of the program complex for
simulating mass transfer processes under cascade decay of
particles for the model of heterodiffusion in two ways is
presented in Fig.2.

Schemes of application modules for calculation of
diffusion fluxes and quantity of substances passed through the
layer are shown in Figs.3 and 4.
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Fig. 2. Architecture of program complex for the model of heterodiffusion in two ways under cascade decay of particles
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Note that program modules for fluxes and quantities
substances consist of one by one cyclic process, and at each
stage the modules interact with the module for concentrations
at the previous stage. At the same time the module for
calculation of the admixture concentrations contains two cyclic
processes.

CONCLUSIONS

Thus, for the description of processes of admixtures mass
transfer in two ways under their cascade decay, the
mathematical model is constructed where the concentration of
particles at certain stage of decay is the mass source of
decaying substance diffusing at the next step. For specific
scheme of cascade decay the balance relaions for mass of
components of the system are formulated. The linear state
equations and Kkinetic relations are obtained. The conditions
under which the mass production capacities for the
components of the system obey, are established. The key sets
of equations of the model of heterodiffusion in two ways
under cascade decay of migrating particles are obtained taking
into consideration only processes of diffusion and sorption-
desorption and under the assumption thhat chemical reactions
that led to the decay of substance is irreversible.

On the basis of the constructed model new statements of
initial-boundary value problems of cascade type where the
concentration of particles at certain step of decay is the mass
source of decaying substance at the next, which also diffuses,
is sorbed, desorbed and decays. For linear chemical reactions
the solutions of the initial-boundary value problems of cascade

Scheme of algorithm of the program module for calculating the quantity of decaying substances that passed through the lower boundary of

type are constructed by iterrative procedure with using Green
functions. This make it possible to obtain the fluxes of
migrating conponents and quantities of corresponding
substances that passed through certain substance, for example
bottom boundary of the body, for given time interval.

The program package for simulation of mass transfer in the
body with two migration ways under cascade decay of
admuxtures is designed. Numerical analysis of concentrations
of decaying particles and mass fluxes is carried out.
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