
36 

Відмова від Шаблонів і Перезапис Термів 
Для моделювання робочих бізнес-процесів в Maude 

 

Bartosz Zieliński 
 Факультет комп'ютерних наук 

Університет Лодзі 
Поморська 149/153, 90-236 Лодзь, Польща 

bzielinski@uni.lodz.pl 

Paweł Maślanka 
Факультет комп'ютерних наук 

Університет Лодзі 
Поморська 149/153, 90-236 Лодзь, Польща 

pmaslan@uni.lodz.pl
 

Cancellation Patterns and Term Rewriting 
For Business Workflow Modeling in Maude 

 

Bartosz Zieliński  
Department of Computer Science 

University of Łódź 
Pomorska 149/153, 90-236 Łódź, Poland 

bzielinski@uni.lodz.pl 

Paweł Maślanka 
Department of Computer Science 

University of Łódź 
Pomorska 149/153, 90-236 Łódź, Poland 

bzielinski@uni.lodz.pl 
 
 

Анотація—Зміна рангу процесів, на відміну від більшості 
інших моделей робочих процесів, не локальна справа. Хоча 
концептуально задача проста, вона, як відомо, важко 
моделюється з Петрі мережами - це математичний апарат, 
найбільш часто використовується для забезпечення 
семантики Workflow конструкції. В роботі показано, що 
використання перезапису, настільки ж ефективне, як мережі 
Петрі для моделювання паралельних і розподілених систем, з 
екваціональними специфікаціями і використовується з не 
локальними змінами.  

Abstract—Cancellation of a range of activities is, unlike most 
of the other workflow patterns, a non-local affair. While 
conceptually simple, it is notoriously difficult to model with Petri 
Nets – a mathematical formalism most commonly used to provide 
semantics to workflow constructs. Here we demonstrate that 
combining term rewriting, equally useful as Petri Nets to model 
paralell and distributed systems,  with equational specifications 
allows dealing naturally with non-local changes. To this end, we 
implement in the term rewriting system Maude a toy workflow 
simulation framework (essentially based on token passing, 
similarly as in the case of Petri Nets) and then augment it with a 
YAWL-like cancellation region construct..  

Ключові слова— термін перезапису; бізнес-процес; робочий 
процес; Maude  

Keywords— term rewriting; business process; workflow; Maude;  

I.  INTRODUCTION 
Cancellation of a range of activities [1] is, unlike most of 

the other workflow patterns, except perhaps for a XOR split 
[2],  a non-local affair. While conceptually simple, it is 
notoriously difficult [1] (though not impossible) to model with 
Petri Nets – a mathematical formalism most commonly used to 
provide semantics to workflow constructs. It requires 
simultanous removal of tokens from an arbitrary subset of 
places by a cancelling transition, and thus may require an 
exponential increase of complexity of the net. Using naturally 
distributed formalisms such as pi-calculus to model workflows 
(as in [3]) leads to another kind of problem with modeling 
cancellation patterns. Namely, the issue is with simultanous 
cancelling of a set of activities, which is obviously difficult in 
any system based on message passing.  

Here we demonstrate that combining term rewriting, 
equally useful as Petri Nets to model paralell and distributed 
systems,  with equational specifications allows dealing 
naturally with non-local changes. To this end we implement in 
the term rewriting system Maude a toy workflow simulation 
framework (based on token passing, similarly as in the case of 
Petri Nets) and then augment it with a YAWL-like cancellation 
region construct [1]. 

II. PRELIMINARIES ON MAUDE AND TERM 
REWRITING 

Maude [4] is a language and execution system based on 
term rewriting [5], [6] and many sorted equational logic [7]. In 
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this section we recall some basic mathematical definitions to 
fix the notation and to make the presentation self-contained.  

An algebraic signature Σ=( ΣS , ΣF) consists of a finite 
poset of sorts ΣS (sorts are like type names, and the order 
corresponds to subtyping) and a finite set of function signatures 
ΣF . Each function signature is of the form f : s1 s2 … sn → s, 
where f  is a function symbol and si's are sorts in ΣS Symbols c 
such that c : → s ∈ ΣF are called constants of sort s..  

 A Σ-algebra A is an assignment of  a set [[s]]A to each sort 
s in ΣS  and a function (interpretation) [[f]]A : 
[[s1]]A×⋯×[[sn]]A→[[s]]A to each function f : s1 s2 … sn → s. It 
is required that [[s1]]A⊆[[s2]]A whenever s1 ≤ s2 . We call x an 
element of A if x ∈	[[s]]A for some s ∈	ΣS.  

Let V:={Vs|s∈ ΣS } be a collection of sets where elements of 
Vs are variables of sort s. A term algebra TΣ(V) has “sort-safe'' 
terms as elements and function symbols interpreted by 
themselves. We denote by TΣ the algebra of ground Σ-terms.  

In Maude, the poset of sorts ΣS in the signature is implicitly 
augmented with separate top elements [K] (referred to as 
kinds) for connected components K of ΣS. We denote [s]:=[K] 
for any s∈K. Giving a function symbol arguments of a wrong 
kind is treated as a syntax error. Giving a function symbol 
arguments of a wrong sort (but correct kind) is legal, but makes 
the result member of a kind but not of a sort. 

 Maude supports the so-called mixfix syntax - underscores 
in the function name correspond to consecutive arguments. 
Thus if ΣF contains _+_:Nat Nat → Nat and _?_:Bool Nat Nat 
→ Nat we can use expressions such as 1+2 or false ? 1 : 2. 

Maude allows to define Σ-algebras as quotients of term 
algebras by a congruence generated by a pair (A,E) of sets of 
equalities. Equalities in A, specified as attributes on function 
symbols, define certain structural properties of binary operators 
such as associativity, commutativity, idempotence or unitality. 
E consists of actual conditional equalities interpreted as 
directed simplification rules. It is assumed that simplifications 
terminate and each term has the unique canonical (irreducible) 
form modulo properties from A. Maude represents equivalence 
classes in TΣ /≡A,E with irreducible elements of TΣ /≡A. 
Conditions in conditional equalities are conjunctions of 
unconditional equalities and membership axioms. 

 Reductions with respect to equalities can be viewed as 
computations of values and as such they represent denotational 
aspect of the problem. The behavioural aspect is represented 
through rewritings. Single step rewrites are defined with a set 
of conditional rewriting rules of the form T1⇒T2 if C, where C 
is a conjunction of equalities, membership axioms and 
rewriting axioms. A rewriting axiom K1⇒K2 is satisfied if K1 
can be rewritten in one or more steps to K2 .  

A rewriting system consists of a signature, a set of 
equalities and equational attributes as well as a collection of 
rewriting rules. Definitions of rewriting systems are collected 
in Maude modules, either functional (which cannot include 
rewriting rules and simply define quotient algebras) or system 
ones which can include rewriting rules. Modules can be 
parametrized by theories which define properties of classes of 
systems with which the module can be instantiated. 

 
Fig. 1. Example workflow with cancellation region 

III. CANCELLATION REGIONS 
Cancellation refers to aborting activations of a selection of 

tasks within the workflow in response to some event, activity 
or decision by the user. As an example consider the process of 
preparing the travel in which separate threads of activities 
devoted to booking a hotel, airplane ticket, etc., might need to 
be simultaneously aborted when the user changes plans. An 
abstract example is presented in Figure 1. There, when the red 
path of execution is taken at the XOR decision gate, the region  
of the workflow enclosed in dashed lines gets cancelled, which 
means that whichever of the four tasks are active (we have four 
possibilities, e.g., {Task1, Task2}, {Task1, Task4}, etc.) 
becomes inactive. In case of workflow system based on Petri 
Nets this might be implemented through removing tokens from 
places inside the cancelled region, which requires special 
inhibitor edges (see. e.g., [1]), or an additional subnet with 
complicated topology. In what follows we will demonstrate 
how to implement cancellation within rewriting models for 
workflow systems. We will show this within a context of a toy 
rewriting theory for a workflow presented in the next section. 
However, it should be noted that the method is completely 
general. 

IV. A TOY REWRITING THEORY FOR WORKFLOWS 
Our toy rewriting theory will allow us to model workflows 

with the following elements: tasks (no distinction is made 
between kinds of tasks, such as user, automatic, manual, etc.), 
XOR and AND joins and splits, and, finally, end nodes and the 
single start node. Late we augment the formalism with 
cancellation regions.  

We start by defining syntax. We represent state of the 
workflow as an ensamble of sort Config of workflow items of 
sort Item collected together using the associative and 
commutative (empty) operator __ . The relevant definitions are 
as follows: 
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sorts  Item Config . 
subsort Item < Config . 
op nil : -> Config . 
op __ : Config Config -> Config  
        [assoc comm id: nil] . 

Note that due to the subsort declaration a single Item is also  
a Config. Note also the neutral element nil of the “__” operator. 
Now we define the constructors for various Items constituting 
the state of the workflow. Each such item (except for the start 
node) is identified by an identifier of sort Id and has a state of 
sort State. Possible states of items are “ready”, “active” and 
“next”. Identifiers can be given as values of a predefined sort 
Qid (quoted identifiers) consiting of strings of charactes which 
are valid Maude identifiers preceded by a single quotation 
mark (e.g., 'q). Later we will also define additional identifier 
constructors. All other attributes of items, unique to each kind 
of item (and distinguishing between different kinds of them) 
are gathered together as terms of sort Part. All items, except 
for the start node are constructed as triples of identifier, state, 
and ``the rest'' with the constructor [_,_,_]: 

sorts Id State Part Op. subsort Qid < Id. 
ops ready active next : -> State . 
ops xor and : -> Op . 
op start : State Id -> Item . 
op [_,_,_] : Id State Part -> Item  . 
ops conn task :  Id -> Part . 
op end : -> Part . 
ops split : Id Id Op -> Part . 
ops join  : Id Op -> Part .  

We define six kinds of items: the start node and the 
remaining five kinds of nodes distinguished by Parts: end 
items,  task, connector (conn), and, finally, split and join gates. 
It is assumed that tasks, gates, start and end nodes connect 
together with connectors. Connectors have one auxilliary 
attribute: the identifier of the next workflow object which the 
connector connects to and which is to be activated by the given 
connection object. The usage of the explicit connector objects 
simplifies the rules, as now items of other kinds are activated 
by and activate only  connectors. This allows us to avoid the 
combinatorial explosion caused by considering each 
combination of types of consecutive items.  

The start node does not have its own identifier (it is 
unique), it does, however, have state, as well as the identifier of 
the unique connector to be activated next. End nodes have no  
auxilliary attributes. Each task node contains identifier of the 
unique connector to be activated next. Both join and split gates 
contain identifiers of their operation of sort Op (either  “and” or 
“xor”). In addition, each join (resp. split) gate contains the 
unique identifier of the next connector  (resp.  the identifiers of 
two next connectors.  

V. REWRITE RULES OF A TOY MODEL 
The rewrite rules define the operational semantics of our 

toy workflow model and allow it to be actually executed (for 
instance to test its correctness). The general idea is as follows: 
There are three states the workflow can be in: “ready”, “active” 
and “next”, although only tasks pass through all three. The 
remaining components use only “ready” and “next”. The ready 

component can pass into “next” or “active” states when its 
input connectors are in the “next” state. A given component 
can make all or some of its output connectors transition to the 
“next” state when it is itself in the “next” state. The additional 
“active” state of tasks simulates the task being executed 
(perhaps for an extended amount of time). The rules are as 
follows. First we define variables to use in the rules: 

vars X X' Y Y' Z : Id . var P : Part . 
var S : State . var O : Op . 

Then come the rewriting rules. For example, the following 
rules allows any task to transition by itself from the active state 
into the “next” state: 

rl [X, active, task(Y)]  
            => [X, next, task(Y)] . 

The following rules describe the activation of tasks by an 
input connector and the activation of an output connector by a 
task:  
rl [X, next, conn(Y)] [Y, ready, task(Z)]     
    => [X, ready, conn(Y)] [Y, active,   
          task(Z)] . 
rl [X, next, task(Y)] [Y, ready, conn(Z)]    
     => [X, ready, task(Y)] [Y, next,  
           conn(Z)] . 

As the last example consider the following rules which deal 
with activation of output connectors of split gates: 
rl [Z, next, split(X, Y, and)] [X, ready,  
   conn(X')] [Y, ready, conn(Y')] => 
     [Z, ready, split(X, Y, and)]  
[X, next, conn(X')] [Y, next, conn(Y')] . 
rl [Z, next, split(X, Y, xor)] [X, ready, 
conn(X')] => [Z, ready, split(X, Y, xor)] 
[X, next, conn(X')] .  
rl [Z, next, split(X, Y, xor)] [Y, ready, 
conn(Y')] => [Z, ready, split(X, Y, xor)] 
[Y, next, conn(Y')] . 

The END split activates both of its output rules. In case of a 
XOR split gate there are two rules, one for the activation of  
each of the output connectors. Thus, a XOR split may activate 
either one of its two outputs, depending on which of these rules 
gets chosen by the system. We omit the rest of the rules as they 
are similar. 

VI. IMPLEMENTATION OF THE CANCELLATION 
REGIONS 

We implement the cancellation regions utilizing the fact 
that Maude (except for frewrite strategy)  will attempt to 
reduce term to the canonical form after each rewrite step. Thus, 
we can implement cancellation through equational reduction, 
which, from the point of view of rewriting, happens 
immediately. More precisely, we introduce a special workflow 
item which holds the list of identifiers of workflow objects to 
be cancelled. Cancellation in this contex means changing the 
state of all objects in the cancellation region to “ready”. The 
relevant code is described below. 

First we need operators and sorts for  lists of identifiers: 
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sort IdList . subsort Id < IdList . 
op nil : -> IdList . 
op __ : IdList IdList -> IdList  
         [assoc id: nil] .  

The following operator represents cancellation regions in 
the workflow: 
op cancel : Id IdList IdList -> Item . 

The first argument is the identifier of the cancellation 
region. The remaining two are the list of identifiers of the 
objects within the region and the list of identifiers of workflow 
objects the activity of which currently remains to be cancelled. 
When the cancellation region is inactive the value of this 
second list is nil. In fact, both lists do not contain identifiers of 
connectors which are treated separately. The cancellation 
region can be activated through the connector  object as 
defined with the following rule:   

rl [X, next, conn(Y)] cancel(Y, IL, nil) 
=> [X, ready, conn(Y)] cancel(Y, IL, IL). 

Note that this rule applies only if the last argument of cancel is 
equal to nil. The main workhorse is the following equation: 

eq cancel(X, IL, Y IL') [Y, S, P] =    
    cancel(X, IL, IL') [Y, ready, P]    
         ccon(Y, cnt(P)) . 

Note that the start node cannot be the part of cancellation 
region. All other workflow objects in our toy model are 
matched by the pattern [Y, S, P]. As the lists of identifiers in 
cancel are not supposed to contain connectors' identifiers we 
have to deal with them separately. To this end, the equality 
above introduces a workflow item constructed with operator 
ccon : Id Nat -> Item which is supposed to de-
activate all input connectors for workflow object Y: 

eq [X, S, conn(Y)] ccon(Y, s N) = [X, 
ready, conn(Y)] ccon(Y, N) . 
eq ccon(Y, 0) = nil . 

The second argument of ccon is the number of input 
connectors which remains to be de-activated. Its initial value is 
the number of incoming connectors computed for each 
workflow item type using the function: 
op cnt : Part -> Nat . 
eq cnt(join(X, O)) = 2 . 
eq cnt(conn(X)) = 0 . 
eq cnt(P) = 1 [owise] . 

The owise attribute means ``in all other cases''. Thus, the 
number of incoming connectors is 2 for join gates, 0 for 
connectors, and 1 in all other cases. 

VII. EXAMPLE 
Consider the example of a workflow in Fig. 1. It can be 

represented in our formalism as a term  

start(next, c(0)) ['e1,ready,end] 
['g1,ready,split(c(1), c(2), and)] 
['g2,ready,split(c(4), c(5), xor)] 
['g3,ready,join(c(7), and)]  
cancel('c1, 'g4 'g5 't1 't2 't3 't4, nil) 
*** etc. 

Here we have used a separate constructor for connector 
identifiers: op c : Nat -> Id .    After some analysis, 
one sees hat the workflow is flawed. Indeed, if the cancellation 
region is invoked, then at least the left one of the branches of 
the last AND join gate is never invoked, and so the end node is 
never activated. We can easily confirm that by searching (with 
the search command) for irreducible (with respect to 
rewritings) terms reachable from the start state in which end is 
not activated (c is assigned to the initial workflow description): 

search c =>! C:Config ['e1, ready, end] . 

and verifying that Maude indeed finds several solutions.  

VIII. CONCLUSION 
We have presented a toy rewriting model for workflows 

and we have extended it with cancellation regions implemented 
through equations. While the toy model is not very useful in 
itself, the method for extending models with cancellations is 
very general and does not depend on the details of our toy 
model. It shows that cancellation patterns can be naturally 
implemented within the framework of rewriting systems. 
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