
36

Відмова від Шаблонів і Перезапис Термів
Для моделювання робочих бізнес-процесів в Maude

Bartosz Zieliński
 Факультет комп'ютерних наук

Університет Лодзі
Поморська 149/153, 90-236 Лодзь, Польща

bzielinski@uni.lodz.pl

Paweł Maślanka
Факультет комп'ютерних наук

Університет Лодзі
Поморська 149/153, 90-236 Лодзь, Польща

pmaslan@uni.lodz.pl

Cancellation Patterns and Term Rewriting
For Business Workflow Modeling in Maude

Bartosz Zieliński
Department of Computer Science

University of Łódź
Pomorska 149/153, 90-236 Łódź, Poland

bzielinski@uni.lodz.pl

Paweł Maślanka
Department of Computer Science

University of Łódź
Pomorska 149/153, 90-236 Łódź, Poland

bzielinski@uni.lodz.pl

Анотація—Зміна рангу процесів, на відміну від більшості
інших моделей робочих процесів, не локальна справа. Хоча
концептуально задача проста, вона, як відомо, важко
моделюється з Петрі мережами - це математичний апарат,
найбільш часто використовується для забезпечення
семантики Workflow конструкції. В роботі показано, що
використання перезапису, настільки ж ефективне, як мережі
Петрі для моделювання паралельних і розподілених систем, з
екваціональними специфікаціями і використовується з не
локальними змінами.

Abstract—Cancellation of a range of activities is, unlike most
of the other workflow patterns, a non-local affair. While
conceptually simple, it is notoriously difficult to model with Petri
Nets – a mathematical formalism most commonly used to provide
semantics to workflow constructs. Here we demonstrate that
combining term rewriting, equally useful as Petri Nets to model
paralell and distributed systems, with equational specifications
allows dealing naturally with non-local changes. To this end, we
implement in the term rewriting system Maude a toy workflow
simulation framework (essentially based on token passing,
similarly as in the case of Petri Nets) and then augment it with a
YAWL-like cancellation region construct..

Ключові слова— термін перезапису; бізнес-процес; робочий
процес; Maude

Keywords— term rewriting; business process; workflow; Maude;

I. INTRODUCTION
Cancellation of a range of activities [1] is, unlike most of

the other workflow patterns, except perhaps for a XOR split
[2], a non-local affair. While conceptually simple, it is
notoriously difficult [1] (though not impossible) to model with
Petri Nets – a mathematical formalism most commonly used to
provide semantics to workflow constructs. It requires
simultanous removal of tokens from an arbitrary subset of
places by a cancelling transition, and thus may require an
exponential increase of complexity of the net. Using naturally
distributed formalisms such as pi-calculus to model workflows
(as in [3]) leads to another kind of problem with modeling
cancellation patterns. Namely, the issue is with simultanous
cancelling of a set of activities, which is obviously difficult in
any system based on message passing.

Here we demonstrate that combining term rewriting,
equally useful as Petri Nets to model paralell and distributed
systems, with equational specifications allows dealing
naturally with non-local changes. To this end we implement in
the term rewriting system Maude a toy workflow simulation
framework (based on token passing, similarly as in the case of
Petri Nets) and then augment it with a YAWL-like cancellation
region construct [1].

II. PRELIMINARIES ON MAUDE AND TERM
REWRITING

Maude [4] is a language and execution system based on
term rewriting [5], [6] and many sorted equational logic [7]. In

37

this section we recall some basic mathematical definitions to
fix the notation and to make the presentation self-contained.

An algebraic signature Σ=(ΣS , ΣF) consists of a finite
poset of sorts ΣS (sorts are like type names, and the order
corresponds to subtyping) and a finite set of function signatures
ΣF . Each function signature is of the form f : s1 s2 … sn → s,
where f is a function symbol and si's are sorts in ΣS Symbols c
such that c : → s ∈ ΣF are called constants of sort s..

 A Σ-algebra A is an assignment of a set [[s]]A to each sort
s in ΣS and a function (interpretation) [[f]]A :
[[s1]]A×⋯×[[sn]]A→[[s]]A to each function f : s1 s2 … sn → s. It
is required that [[s1]]A⊆[[s2]]A whenever s1 ≤ s2 . We call x an
element of A if x ∈	[[s]]A for some s ∈	ΣS.

Let V:={Vs|s∈ ΣS } be a collection of sets where elements of
Vs are variables of sort s. A term algebra TΣ(V) has “sort-safe''
terms as elements and function symbols interpreted by
themselves. We denote by TΣ the algebra of ground Σ-terms.

In Maude, the poset of sorts ΣS in the signature is implicitly
augmented with separate top elements [K] (referred to as
kinds) for connected components K of ΣS. We denote [s]:=[K]
for any s∈K. Giving a function symbol arguments of a wrong
kind is treated as a syntax error. Giving a function symbol
arguments of a wrong sort (but correct kind) is legal, but makes
the result member of a kind but not of a sort.

 Maude supports the so-called mixfix syntax - underscores
in the function name correspond to consecutive arguments.
Thus if ΣF contains _+_:Nat Nat → Nat and _?_:Bool Nat Nat
→ Nat we can use expressions such as 1+2 or false ? 1 : 2.

Maude allows to define Σ-algebras as quotients of term
algebras by a congruence generated by a pair (A,E) of sets of
equalities. Equalities in A, specified as attributes on function
symbols, define certain structural properties of binary operators
such as associativity, commutativity, idempotence or unitality.
E consists of actual conditional equalities interpreted as
directed simplification rules. It is assumed that simplifications
terminate and each term has the unique canonical (irreducible)
form modulo properties from A. Maude represents equivalence
classes in TΣ /≡A,E with irreducible elements of TΣ /≡A.
Conditions in conditional equalities are conjunctions of
unconditional equalities and membership axioms.

 Reductions with respect to equalities can be viewed as
computations of values and as such they represent denotational
aspect of the problem. The behavioural aspect is represented
through rewritings. Single step rewrites are defined with a set
of conditional rewriting rules of the form T1⇒T2 if C, where C
is a conjunction of equalities, membership axioms and
rewriting axioms. A rewriting axiom K1⇒K2 is satisfied if K1
can be rewritten in one or more steps to K2 .

A rewriting system consists of a signature, a set of
equalities and equational attributes as well as a collection of
rewriting rules. Definitions of rewriting systems are collected
in Maude modules, either functional (which cannot include
rewriting rules and simply define quotient algebras) or system
ones which can include rewriting rules. Modules can be
parametrized by theories which define properties of classes of
systems with which the module can be instantiated.

Fig. 1. Example workflow with cancellation region

III. CANCELLATION REGIONS
Cancellation refers to aborting activations of a selection of

tasks within the workflow in response to some event, activity
or decision by the user. As an example consider the process of
preparing the travel in which separate threads of activities
devoted to booking a hotel, airplane ticket, etc., might need to
be simultaneously aborted when the user changes plans. An
abstract example is presented in Figure 1. There, when the red
path of execution is taken at the XOR decision gate, the region
of the workflow enclosed in dashed lines gets cancelled, which
means that whichever of the four tasks are active (we have four
possibilities, e.g., {Task1, Task2}, {Task1, Task4}, etc.)
becomes inactive. In case of workflow system based on Petri
Nets this might be implemented through removing tokens from
places inside the cancelled region, which requires special
inhibitor edges (see. e.g., [1]), or an additional subnet with
complicated topology. In what follows we will demonstrate
how to implement cancellation within rewriting models for
workflow systems. We will show this within a context of a toy
rewriting theory for a workflow presented in the next section.
However, it should be noted that the method is completely
general.

IV. A TOY REWRITING THEORY FOR WORKFLOWS
Our toy rewriting theory will allow us to model workflows

with the following elements: tasks (no distinction is made
between kinds of tasks, such as user, automatic, manual, etc.),
XOR and AND joins and splits, and, finally, end nodes and the
single start node. Late we augment the formalism with
cancellation regions.

We start by defining syntax. We represent state of the
workflow as an ensamble of sort Config of workflow items of
sort Item collected together using the associative and
commutative (empty) operator __ . The relevant definitions are
as follows:

38

sorts Item Config .
subsort Item < Config .
op nil : -> Config .
op __ : Config Config -> Config
 [assoc comm id: nil] .

Note that due to the subsort declaration a single Item is also
a Config. Note also the neutral element nil of the “__” operator.
Now we define the constructors for various Items constituting
the state of the workflow. Each such item (except for the start
node) is identified by an identifier of sort Id and has a state of
sort State. Possible states of items are “ready”, “active” and
“next”. Identifiers can be given as values of a predefined sort
Qid (quoted identifiers) consiting of strings of charactes which
are valid Maude identifiers preceded by a single quotation
mark (e.g., 'q). Later we will also define additional identifier
constructors. All other attributes of items, unique to each kind
of item (and distinguishing between different kinds of them)
are gathered together as terms of sort Part. All items, except
for the start node are constructed as triples of identifier, state,
and ``the rest'' with the constructor [_,_,_]:

sorts Id State Part Op. subsort Qid < Id.
ops ready active next : -> State .
ops xor and : -> Op .
op start : State Id -> Item .
op [_,_,_] : Id State Part -> Item .
ops conn task : Id -> Part .
op end : -> Part .
ops split : Id Id Op -> Part .
ops join : Id Op -> Part .

We define six kinds of items: the start node and the
remaining five kinds of nodes distinguished by Parts: end
items, task, connector (conn), and, finally, split and join gates.
It is assumed that tasks, gates, start and end nodes connect
together with connectors. Connectors have one auxilliary
attribute: the identifier of the next workflow object which the
connector connects to and which is to be activated by the given
connection object. The usage of the explicit connector objects
simplifies the rules, as now items of other kinds are activated
by and activate only connectors. This allows us to avoid the
combinatorial explosion caused by considering each
combination of types of consecutive items.

The start node does not have its own identifier (it is
unique), it does, however, have state, as well as the identifier of
the unique connector to be activated next. End nodes have no
auxilliary attributes. Each task node contains identifier of the
unique connector to be activated next. Both join and split gates
contain identifiers of their operation of sort Op (either “and” or
“xor”). In addition, each join (resp. split) gate contains the
unique identifier of the next connector (resp. the identifiers of
two next connectors.

V. REWRITE RULES OF A TOY MODEL
The rewrite rules define the operational semantics of our

toy workflow model and allow it to be actually executed (for
instance to test its correctness). The general idea is as follows:
There are three states the workflow can be in: “ready”, “active”
and “next”, although only tasks pass through all three. The
remaining components use only “ready” and “next”. The ready

component can pass into “next” or “active” states when its
input connectors are in the “next” state. A given component
can make all or some of its output connectors transition to the
“next” state when it is itself in the “next” state. The additional
“active” state of tasks simulates the task being executed
(perhaps for an extended amount of time). The rules are as
follows. First we define variables to use in the rules:

vars X X' Y Y' Z : Id . var P : Part .
var S : State . var O : Op .

Then come the rewriting rules. For example, the following
rules allows any task to transition by itself from the active state
into the “next” state:

rl [X, active, task(Y)]
 => [X, next, task(Y)] .

The following rules describe the activation of tasks by an
input connector and the activation of an output connector by a
task:
rl [X, next, conn(Y)] [Y, ready, task(Z)]
 => [X, ready, conn(Y)] [Y, active,
 task(Z)] .
rl [X, next, task(Y)] [Y, ready, conn(Z)]
 => [X, ready, task(Y)] [Y, next,
 conn(Z)] .

As the last example consider the following rules which deal
with activation of output connectors of split gates:
rl [Z, next, split(X, Y, and)] [X, ready,
 conn(X')] [Y, ready, conn(Y')] =>
 [Z, ready, split(X, Y, and)]
[X, next, conn(X')] [Y, next, conn(Y')] .
rl [Z, next, split(X, Y, xor)] [X, ready,
conn(X')] => [Z, ready, split(X, Y, xor)]
[X, next, conn(X')] .
rl [Z, next, split(X, Y, xor)] [Y, ready,
conn(Y')] => [Z, ready, split(X, Y, xor)]
[Y, next, conn(Y')] .

The END split activates both of its output rules. In case of a
XOR split gate there are two rules, one for the activation of
each of the output connectors. Thus, a XOR split may activate
either one of its two outputs, depending on which of these rules
gets chosen by the system. We omit the rest of the rules as they
are similar.

VI. IMPLEMENTATION OF THE CANCELLATION
REGIONS

We implement the cancellation regions utilizing the fact
that Maude (except for frewrite strategy) will attempt to
reduce term to the canonical form after each rewrite step. Thus,
we can implement cancellation through equational reduction,
which, from the point of view of rewriting, happens
immediately. More precisely, we introduce a special workflow
item which holds the list of identifiers of workflow objects to
be cancelled. Cancellation in this contex means changing the
state of all objects in the cancellation region to “ready”. The
relevant code is described below.

First we need operators and sorts for lists of identifiers:

39

sort IdList . subsort Id < IdList .
op nil : -> IdList .
op __ : IdList IdList -> IdList
 [assoc id: nil] .

The following operator represents cancellation regions in
the workflow:
op cancel : Id IdList IdList -> Item .

The first argument is the identifier of the cancellation
region. The remaining two are the list of identifiers of the
objects within the region and the list of identifiers of workflow
objects the activity of which currently remains to be cancelled.
When the cancellation region is inactive the value of this
second list is nil. In fact, both lists do not contain identifiers of
connectors which are treated separately. The cancellation
region can be activated through the connector object as
defined with the following rule:

rl [X, next, conn(Y)] cancel(Y, IL, nil)
=> [X, ready, conn(Y)] cancel(Y, IL, IL).

Note that this rule applies only if the last argument of cancel is
equal to nil. The main workhorse is the following equation:

eq cancel(X, IL, Y IL') [Y, S, P] =
 cancel(X, IL, IL') [Y, ready, P]
 ccon(Y, cnt(P)) .

Note that the start node cannot be the part of cancellation
region. All other workflow objects in our toy model are
matched by the pattern [Y, S, P]. As the lists of identifiers in
cancel are not supposed to contain connectors' identifiers we
have to deal with them separately. To this end, the equality
above introduces a workflow item constructed with operator
ccon : Id Nat -> Item which is supposed to de-
activate all input connectors for workflow object Y:

eq [X, S, conn(Y)] ccon(Y, s N) = [X,
ready, conn(Y)] ccon(Y, N) .
eq ccon(Y, 0) = nil .

The second argument of ccon is the number of input
connectors which remains to be de-activated. Its initial value is
the number of incoming connectors computed for each
workflow item type using the function:
op cnt : Part -> Nat .
eq cnt(join(X, O)) = 2 .
eq cnt(conn(X)) = 0 .
eq cnt(P) = 1 [owise] .

The owise attribute means ``in all other cases''. Thus, the
number of incoming connectors is 2 for join gates, 0 for
connectors, and 1 in all other cases.

VII. EXAMPLE
Consider the example of a workflow in Fig. 1. It can be

represented in our formalism as a term

start(next, c(0)) ['e1,ready,end]
['g1,ready,split(c(1), c(2), and)]
['g2,ready,split(c(4), c(5), xor)]
['g3,ready,join(c(7), and)]
cancel('c1, 'g4 'g5 't1 't2 't3 't4, nil)
*** etc.

Here we have used a separate constructor for connector
identifiers: op c : Nat -> Id . After some analysis,
one sees hat the workflow is flawed. Indeed, if the cancellation
region is invoked, then at least the left one of the branches of
the last AND join gate is never invoked, and so the end node is
never activated. We can easily confirm that by searching (with
the search command) for irreducible (with respect to
rewritings) terms reachable from the start state in which end is
not activated (c is assigned to the initial workflow description):

search c =>! C:Config ['e1, ready, end] .

and verifying that Maude indeed finds several solutions.

VIII. CONCLUSION
We have presented a toy rewriting model for workflows

and we have extended it with cancellation regions implemented
through equations. While the toy model is not very useful in
itself, the method for extending models with cancellations is
very general and does not depend on the details of our toy
model. It shows that cancellation patterns can be naturally
implemented within the framework of rewriting systems.

REFERENCES
[1] Van Der Aalst, Wil MP, and Arthur HM Ter Hofstede. "YAWL: yet

another workflow language." Information systems 30.4 (2005): 245-275.
[2] van Der Aalst, Wil MP, et al. "Workflow patterns." Distributed and

parallel databases 14.1 (2003): 5-51.
[3] Puhlmann, Frank, and Mathias Weske. "Using the π-calculus for

formalizing workflow patterns." International Conference on Business
Process Management. Springer Berlin Heidelberg, 2005.

[4] Clavel, Manuel, et al. "The maude 2.0 system." International Conference
on Rewriting Techniques and Applications. Springer Berlin Heidelberg,
2003.

[5] Meseguer, José. "Conditional rewriting logic as a unified model of
concurrency." Theoretical computer science 96.1 (1992): 73-155.

[6] Meseguer, José, and Grigore Roşu. "The rewriting logic semantics
project." Theoretical Computer Science 373.3 (2007): 213-237.

[7] Meseguer, José. "Membership algebra as a logical framework for
equational specification." Recent Trends in Algebraic Development
Techniques (1998): 18-61.

[8] Clavel, Manuel, et al. All about maude-a high-performance logical
framework: how to specify, program and verify systems in rewriting
logic. Springer-Verlag, 2007.

