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Abstract—Classes of languages accepted either with given 
probability, or with given mistake by basic models of finite 
quantum automata are characterized under supposition that 
unitary operators satisfy to commutative law. 

Анотація—Охарактеризомано класи мов, які 
розпізнають з заданою ймовірністю, обо з заданою помилкою 
скінченні квантові автомати за умови, що унітарні 
оператори задовільняють закону комутатівністі. 
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I.  INTRODUCTION 
Success in the development of quantum algorithms theory 

has stimulated intensive formation of quantum automata (QA) 
theory. Very extraordinary situation takes place for finite QA 
theory (since we deal only with finite QA the word “finite” in 
word combination “finite QA” is omitted). A variety of 
different QA models intended to recognize languages in the 
given alphabet (i.e. all these models are acceptors) has been 
proposed. This means, at least, that QA models can be used 
for the decision of problems, in which this or that subtask can 
be reduced to recognition of some language. It is worth to note 
that all proposed QA models differ by complexity, as well as 
by recognizing capacities. 

Each QA model is defined in terms of quantum Turing 
machine (QTM) in the following way. The set of the states of 
QTM is the set of unit vectors in the complex -dimensional 
Euclidean space, in which some orthonormal basis is fixed. 
Elements of this orthonormal basis are the basic states for QA. 
Besides, some set of accepting basic states is fixed. Initially 
QTM is either in some fixed initial state, or in some fixed 
initial mixed state, which is some finite set of ordered pairs of 
the type (state, its probability), such that the sum of 

probabilities equals to 1. There is infinite to the right input 
tape partitioned into cells, enumerated by positive integers. 

The number of heads of QTM is equal to some fixed 
positive integer . Finite input alphabet is fixed. With each 
input string, which length does not exceed the integer , it is 
associated some unitary operator acting in the complex -
dimensional Euclidean space. Analyzed input string is written, 
letter by letter, in the leftmost fragment of the tape, and 
initially  heads of QTM observe the first  cells of the 
tape. 

When QTM heads observe current fragment of the tape, 
then only a single action of the following two types of actions 
can be performed. The first type of actions is measurement. It 
transforms current state (or current mixed state) of QTM into 
some basic state (or some set of basic states) of QA. The 
probability for QTM to be transformed into this or the other 
basic state depends only on the current state (or current mixed 
state) of QTM. The second type of actions is transformation of 
current state (or current mixed state) of QTM by unitary 
operator, which corresponds to the current fragment of the 
input string, and simultaneous shifting all  heads one cell to 
the right (i.e. we deal only with 1-way QTM).  

Probability of QTM to accept analyzed input string is 
computed at the final stage. This computing is reduced to 
projection of final state (or final mixed state) of QTM into the 
subspace spanned by the accepting basic states. It is worth to 
note that any projection of current state of QTM is also 
considered as some variant of measurement. Since we deal 
with probability of accepting analyzed input string, two 
problems of language recognition for QA models can be 
considered, namely, recognition with given probability and 
recognition with given mistake. 

The main problems that have been investigated for QA are 
the following ones: to describe in the explicit form the class of 
languages recognized by this or the other QA model, to 
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compare recognizing capacities of different QA models, and to 
find criteria of states equivalence for this or the other QA 
model. 

Unfortunately, the situation with the first problem is very 
far from its complete decision. Because of this situation it 
seems reasonable to investigate QA models under supposition 
that there are some additional requirements, which are natural, 
at least, from the mathematical point of view. Obviously, that 
this class of requirements includes the supposition that unitary 
operators satisfy to commutative law. The aim of the given 
paper is to investigate QA models under this assumption. 

II. BASIC QA MODELS 

Let   be fixed input alphabet,  be complex 
-dimensional Euclidean space,  be fixed basis in it, 

 be the set of accepting states, and  be the 
projection operator on the subspace spanned by the accepting 
basic states. 

The following well known approach, which has been used 
in the theory of probabilistic automata, can be applied for 
definition of languages recognized by QTM: 

A language  is accepted by QTM with given 
probability  , if any string  is 
accepted with probability not less then , while any 
string  is accepted with probability not exceeding 

. 

A language  is accepted by QTM with given 
mistake  , if any string  
is accepted with probability not less then , while any 
string  is accepted with probability not exceeding 

. 

A. Models of QA Defined via 1-Head QTM 
We deal with 1-head QTA, which head at each instant 

move one cell to the right. With each input letter  it is 
associated some unitary operator , acting in the complex 

-dimensional Euclidean space . Thus, for each input 
string  it is uniquely defined unitary operator 

. 

Firstly we consider basic QA models that start in fixed 
initial state , which is some unit column vector. 

The model MO-1QFA [1] is 1-head QTM, with single 
measurement, carried out only on the final stage. An input 
string  is accepted by this model with probability 

. 

It has been established in [2] that the class of languages 
accepted with given mistake by the model MO-1QFA equals 
to the class of languages accepted by group finite automata. 

The model MM-1QFA [3] differs from the model MO-
1QFA in the following way. Two non-intersecting subsets   
and  , correspondingly, of rejecting 
and of non-accepting basic states are fixed. 

At any intermediate instant it is applied the relevant 
unitary operator, possibly followed by measurement in the 
basis . If the result of measurement is some state  
then the next instant starts, while if the result of measurement 
is some state  then QTM halts. Analyzed input 
string is accepted, if , and rejected, if . 

It is worth to note that the model MM-1QFA is based on 
well known “Decide and Halt” approach, which is intended to 
solve the class of problems of recognition called “promise 
problems”. The class of languages accepted by the model 
MM-1QFA is not defined in explicit form, till now. It is only 
known that this class of languages includes properly the class 
of languages accepted by group finite automata, and it is 
included properly in the class of regular languages. Moreover, 
it has been established in [4] that the class of languages 
accepted by the model MM-1QFA is not closed under Boolean 
operations. 

The model N-QFA [5] at any instant admits application of 
any sequence of unitary operators and projective 
measurements. Thus, exploring of ancilla qubits can be easily 
presented in this model. The class of languages accepted by 
the model N-QFA is not defined in explicit form, till now. It is 
only known that this class of languages satisfies to strict 
inclusions pointed above for the model MM-1QFA. 

The model CL-QFA [6] is some generalization of the 
model N-QFA. In this model some regular language in the 
alphabet of igenvalues of Hermitian operators is used to 
determine projective measurements at intermediate instants. 
The class of languages accepted by the model CL-QFA is not 
defined in explicit form, till now. It is only known that any 
regular language can be accepted with given mistake by the 
model CL-QFA. 

Now we consider basic QA model, called L-QFA [7]. This 
model is 1-head QTM, with single measurement carried out 
only on the final stage, and which starts in some fixed initial 
mixed state. Any mixed state is some set , 
where unit vectors   are pair-wise different, 

 for each , and . An input 
string  is accepted by the model L-QFA with 
probability 

. 

This mixed state  can be presented by 
density operator 

. 

Thus, initial state of the model L-QFA is some density 
operator. Each unitary operator  transforms mixed state  
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into the mixed state . It is known that the class of 
languages accepted by the model L-QFA equals to the class of 
languages accepted by invertible probabilistic finite automata. 

By analogy with above considered generalizations of the 
model MO-1QFA, similar generalizations can be constructed 
for the model L-QFA. However, as far as I know, such 
generalizations have not been investigated in detail. 

B. Model of QA Defined via -Heads QTM 

We deal with -heads QTM, which heads at each instant, 
move simultaneously one cell to the right. It is supposed that 
with each input string   it is associated 
some unitary operator  acting in the space . Thus, for 
each input string  it is uniquely defined unitary 
operator , where  for 

all . 

The model QFA [8] is -heads QTM, with single 
measurement carried out only on the final stage. This model 
starts in some fixed initial state , which is some unit 
column vector. The class of languages accepted by the model 

QFA is not defined in explicit form, till now. It is only 
known that this class of languages is closed under Boolean 
operations, but it is not closed under concatenation and 
iteration. Moreover, it has been established that for all integers 

 the class of languages accepted by the model QFA is 
strictly included into the class of languages accepted by the 
model QFA. 

By analogy with above considered generalizations of the 
model MO-1QFA, similar generalizations can be constructed 
for the model QFA. However, as far as I know, such 
generalizations have not been investigated in detail. 

III. MAIN RESULTS 

A. Analysis of Models of QA Defined via 1-Head QTM 
Let us characterize languages accepted by the models MO-

1QFA and L-QFA under the supposition that unitary operators 
associated with input letters satisfy to commutative law. We 
remind that MO-1QFA and L-QFA are the models in which 
measurement is carried out only at a final stage. 

Let  be the input alphabet of QA. Unitary 
operator associated with input letter  is denoted . 
Since it is supposed that  for all , 
then to define the unitary operator for analyzed input sequence, 
it is sufficient to know only the number of occurrences of each 
letter in this input sequence, and unitary operators associated 
with these letters. Based on this factor we can present uniquely 
the unitary operator defined for any input string  in the 
standard form 

, 

where   is the number of occurrences of the 
letter  in the input string . 

Let  be the equivalence relation on the set  defined as 
follows: 

. 

As a matter of fact, this equivalence relation is a 
congruence on the set , since   
implies that  for all . We deal with the factor-

set , as with a partition of the set . It is evident that 
the following theorem holds. 

Theorem. For each of the models, MO-1QFA and L-QFA, 
any language, accepted either with given probability, or with 
given mistake, is the union of some blocks of the partition 

. 

It is of special interest the situation, when the equivalence 
relation  is finitary, i.e. when the partition  consists of 
finite number of blocks. Such situation arises, in particular, in 
the following important case. 

Let us suppose that for each unitary operator  
 there exists some positive integer , such that 

, where  is the identity map acting in . 

Let   be the minimal positive integer, such 

that identity  holds. The unitary operator defined for 

any input string  can be present uniquely in the reduced 
standard form 

, 

where   is the number of occurrences of the 
letter  in the input string . This factor implies that the 

equivalence relation  on the set  can be defined in the 
following way: 

. 

It is evident that the number for blocks of the partition 
 equals to the product . 

The following example justifies non-triviality of proposed 
constructions. 

Example. Let us consider 1-qubit MO-1QFA. In this case 
any special unitary operator can be presented as some 
composition of rotations about the -, -, and -axes of the 
Bloch sphere (see [9], for example). The word “special” means 
that the determinant of a matrix that defines unitary operator 
equals to 1. It is well known that to investigate QA, it is 
sufficient to deal only with special unitary operators. 

Let us suppose that unitary operator associated with each 
input letter   is the rotation through the angle 
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  around the -axe of the Bloch sphere. It 
is evident that these unitary operators satisfy to commutative 
law. Thus, any language recognized by considered model of 
QA, either with given probability, or with given error, is the 
union of some blocks of the partition . This partition is 
finitary if and only if each number   is some 
rational one. End of Example. 

Let us characterize models of QA with measurements at 
intermediate instants (the models MM-1QFA, N-QFA, and CL-
QFA), under supposition that unitary operators associated with 
input letters satisfy to commutative law. 

In this case, when any of the models MM-1QFA, N-QFA, 
and CL-QFA is processing any given input string  of 
the length , different variants for computing, provided by 
QTM, are possible.  

Each variant for computing, provided by QTM, can be 
determined in the following way. The number   of 
measurements at intermediate instants is selected with given 
probability. Instants for intermediate measurements are fixed 
by inserting  symbols  on a segment of the analyzed input 
string  between the first and last letters with given 
probability.Each maximal fragment of the analyzed input 
string, which does not contain the symbol , is replaced with 
the standard form of the unitary operator defined for this 
fragment. Each symbol  is replaced with measurement 
admissible on this intermediate step, with given probability, 
and measurement only on the final stage is also inserted. 

It is evident, that if the partition  is finitary, then 
each maximal fragment of the analyzed input string, which 
does not contain the symbol , can be replaced with the 
reduced standard form of the unitary operator defined for this 
fragment. Thus, for any of the models MM-1QFA, N-QFA, 
and CL-QFA, the set of all different variants for computing, 
provided by QTM, when processing any given input string 

 of the length , can be presented by some labeled 
rooted oriented tree. 

B. Analysis of Models of QA Defined via -Heads QTM 
We consider two different cases. 

The first case takes the place when either , or  
and all unitary operators associated with input string of the 
length not exceeding the integer  satisfy to commutative law. 
In this case we get the situation similar to the one that has been 
analyzed previously for the model MO-1QFA. It means that the 
theorem holds in this case. 

The second case takes the place when  and only 
unitary operators associated with input string of the length  
satisfy to commutative law. In this situation the standard form 
of the unitary operator defined for any input string  
can be defined in the following way. 

If , then  

,  

where  for all . 

If , then 

, 

where the unitary operator  is the standard form for the 
product  constructed by the rules, similar 
to the ones that has been defined for the model MO-1QFA, 
and . 

Since there is only finite number of input strings of the 
length less than , the presence of the unitary operator  
have no influence on the property "to be finitary" for the 
partition  of the set . 

IV. CONCLUSIONS 
In the given paper basic models of finite quantum automata 

have been considered under the supposition that unitary 
operators satisfy to commutative law. The classes of languages 
accepted by these models either with given probability, or with 
given mistake have been characterized in terms of constructed 
partition of the set of all input strings. 

Detailed analysis of these classes of languages is tightly 
connected with investigation the structure of the set of all 
finitely generated commutative semigroups of special unitary 
operators, acting in the complex -dimensional Euclidean 
space. This is the subject for future research. 

It is worth to note that this problem is sufficiently hard even 
in the case when , i.e. for 1-qubit finite quantum 
automata. 
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