

112

The Comparison of the Web Application
Development Frameworks

J. Rogowski
Institute of Information Technology,

 Lodz University of Technology,
Branch of the University of Lodz in Tomaszow Mazowiecki,

jan.rogowski@uni.lodz.pl

Порівняння Каркасів для Створення Веб-Додатків
Я. Роговський

Інститут інформаційних технологій,
Технологічний університет м. Лодзь,

Університет в Лодзі, Філія Томашів-Мазовецький
jan.rogowski@p.lodz.pl

Abstract—The main goal of this work is to evaluate the web

application development frameworks in context of productivity,
powerful features, security, flexibility scale, performance and size
of the community. The chosen technologies are Ruby on Rails
written in Ruby, Django written in Python, and Grails written in
Groovy.

Анотація—Основною метою даної роботи є оцінка
можливостей каркасів для створення веб-додатків в
контексті продуктивності, потужних функцій, безпеки,
гнучкості та розміру спільноти. Обрані технології то Ruby on
Rails створений в Ruby, Django створений в Python і Grails
створений в Groovy.

Keywords—web programming; frameworks comparison

Ключові слова—веб-програмування; порівняння каркасів веб-
додатків

I. INTRODUCTION
The career path of basic designers of static websites is

pretty straightforward. Problems really begin for so-called
back-end programmers. They have to choose from many web
technologies available on the market, and what is worse, there
is currently no recommendation system for the best decision.
What is pretty obvious nowadays, however, is that nobody
creates web services without using frameworks. It would be
like reinventing the wheel because each and every framework
helps with the most common things we meet in everyday web
application.

Usually, developers choose the most favourite frameworks
by coincidence, for example, the company where they are
hired, using the same technology for years, old acquaintance
recommendation, a program of study focused on one of the
technologies, and so on. To be excellent in a particular field
requires spending many weeks of effort, and humans inherently
do not like doing something which is not enjoyable or does not

see promising results fairly quickly. That is why, once chosen,
a specific technology most often becomes a favourite. Every
framework website advertises themselves as the best, with a lot
of possibilities, so the problem is how to choose a framework
which we would like to work within over the next few years.
What is crucial and what is worthy of our attention?

The main goal of this work is to evaluate a few of the most
promising and so-called cutting-edge technology frameworks
and find out which ones support the criteria in place for
present-day services. The technologies chosen for appraising
are: Ruby on Rails [1] written in Ruby, Django [2] writen in
Python, and Grails [3] written in Groovy.

II. WEB FRAMEWORKS
Web applications realize almost the same activities, and it

does not make sense to write similar code every time. That is
why frameworks provide a predefined structure and all needed
mechanisms. Frameworks can be seen as a set of ready pre-
written code or bunch of miscellaneous libraries with one
general purpose – working in the Internet based on the client -
serve architecture. The difference between framework and a set
of libraries is their focusing range. Libraries often solve a
narrow scope of a problem, whilst frameworks give a broader
span of functionalities. Framework should aid web developers
in their work. Except the code, frameworks provide the design
patterns and principles. Thanks to that, developers are able to
implement more unified, nicer and more reusable code, which
leads to better quality of application. Nowadays, so-called ’full
stack’ frameworks are the most popular. They form a
connected software stack, that is useful for every aspect of web
development. These frameworks may be considered as an
extension of the programming language.

The list of benefits for using web frameworks is long, and
what is more - nowadays there are various available web
frameworks. Most of them are free to use and have an open

113

source. Anyone can use some part of web framework or even
contribute to framework development, like propose
improvements, review a code or find some bugs and security
vulnerabilities. Service java-source.net presents almost 70
different open-source java web frameworks, along with short
descriptions and links to them. For the purposes of this work
there were selected only three web frameworks.

A. Ruby on Rails
Ruby on Rails is built in Ruby (open source, dynamic,

interpreted, object-oriented programming language, created in
Japan by Yukihiro Matsumoto) under MIT License. Ruby on
Rails uses the Model-View-Controller architecture where
models map tables in a database, views are interpreted and
converted to HTML at the run-time, and controllers are the
server-side component for responding to external requests from
the web server. Sometimes people say that RoR is not only a
framework, but also a way of thinking about web application. It
can be true, because nowadays exist few great frameworks,
which officially mention about inspiration of Rails. One of
them is Grails. Convention over configuration is the strongest
point in Ruby on Rails and along with DRY (Don’t Repeat
Yourself) are the key concepts of Ruby on Rails.

B. Django
Django is a framework based on Python that was written in

2003. Python is open source, dynamic, interpreted, object-
oriented programming language, which implementation was
started in December 1989 in Netherlands. The framework was
developed to meet the needs of a fast-paced online newsroom
environment. Django as well as RoR follows Model-View-
Controller but with a significant difference. Django models
define the data of the web application, views handle requests
and make a response for them, and templates are used for
rendering response. So, in the world of Django MVC does not
work as an acronym, and is better to call it Model-Template-
View. The view describes the data that gets presented to the
user (which data is presented, not how is displayed) and is the
Python callback function for an appropriate URL.

C. Grails
Grails is a web framework, for the Java platform built in

Groovy. Groovy is object-oriented programming language for
the Java platform, released on January 2, 2007 in England.
Groovy is dynamically compiled to Java Virtual Machine
bytecode. First name of Grails was ’Groovy on Rails’. In
March 2006, that name was changed with regard to a request
by David Heinemeier Hansson, the founder of the Ruby on
Rails. This situation clearly shows the influence of RoR.
However, what distinguishes Grails from the above
frameworks, is a fact that it takes a set of other frameworks
literally. Grails bundles Spring, Hibernate, H2, Tomcat and
remove the complexity of it, and thanks to that, using them is
simple and provide functionality out of the box. Grails should
allow to smoothly integrate with any other library running on
JVM, which provides powerful features of the enormous world
of Java tools.

III. FRAMEWORKS EVALUATION
To achieve the stated goals, three web applications have

been created in the above-specified technologies. They have

the same database scheme, sample dataset and front-end
interface. In addition, in order to perform the evaluation of the
frameworks in an effective way, the process is split into three
phases.

A comparison between frameworks is presented, showing
the features, helpers, and methods in a few examples.

The results of the benchmarks for the most popular actions
in web application are presented. All results of
benchmarks have been counted via the application
written in Java. This application uses HTTP requests to
get access to the tested applications and trigger
examined actions. Each test is executed many times in
order to reject outlier results.

During the process of web application frameworks
evaluation the following features have been evaluated:
internationalization, URL mapping, Cross-Site Scripting attack
defense, Cross-Site Request Forgery attack defense and SQL
Injection attack defense.

Each framework provides an effective mechanism against
the most popular vectors of attack, like SQL Injection, Cross
Site Scripting or Cross-Site Request Forgery. These types of
attacks are in the top of ten most critical web application
security risks. All of the three frameworks bring the same
approach. Security mechanisms against SQL Injection and XSS
are turned on by default. The developer is fully conscious when
he is doing an action which is possibly vulnerable. In case of
CSRF, only Grails needs some extra action to do. Django and
RoR do it again by default. For internationalization, Ruby on
Rails came off the best, providing the most powerful features
out of the box.

IV. BENCHMARKS
This section presents the real data of performance

comparison of executing fundamental tasks such as JSON
serialization, database access, and server-side template
composition. All tests were done several times to reject
incidental cases, on the same machine and with the identical
algorithm. The comparison does not take into account server
stress, multithreading, number of simultaneous requests or any
other server features.

Each experiment provides specified REST API and has a
stated JSON response. Due to these facts it was possible to
execute all tests for each framework with the same input and
expected formatted results. Another thing common to all tests
is returning time in milliseconds. For the purpose of this work
three almost identical web applications have been written.
Models and relation between them are the part of a real
financial application.

A. Persisting data in a database
This test is called simple insert. The function which is

responsible for handling requests, takes the value of parameter
n from the query, then it obtains time from a system clock, and
opens transaction n times, creates a sample user object, saves it
and closes the session. Finally, the algorithm obtains system
time again, and is able to calculate passed time needed for
creation of n user objects. The last necessary thing is to prepare
specified JSON response. Experiment started from n = 10 to n

114

= 498 with step 2, from n = 500 to n = 1000 with step 5, where
every step was repeated 3 times.

Fig. 1. Simple entity persisting results (time versus number of entities)

It is easy to notice that the dependency is linear (see Fig. 1).
Ruby on Rails has the worst time needed to persist object in
database. Django has a bit better result while Grails has the
best score.

Fig. 2. Complex entities persisting results (time versus number of entities)

In the second experiment called complex insert,
frameworks had to persist more complex objects, because this
time the user had two kinds of relations. Each user entity has
one of its project and three of its rights. This time Django had
the best score, which came as a surprise, because Grails comes
second in this competition. The longest time to persist
connecting object was needed for Ruby on Rails. Making
persisting harder did not change linear character of dependency
(see Fig. 2), but just increased the time needed to insert all
entities in the database.

B. Reading from a database
Reading data from a database is also the most needed task

for a web application. In the beginning, the function takes the
value of parameter n from the URL query, and prepares the
data set. The method counts whether there is enough rows in
the database and eventually inserts the desired number of rows.
From this point, the time is ’started’, the function gets the
limited number of objects from the database using query set.
Then the time is ’stopped’, the elapsed time is calculated, and
the response in JSON is prepared. This time Django has the
worst times needed to read and map entities. Rails took second
place but with small loss to the Grails framework (see Fig. 3).

Fig. 3. Reading entities results (time versus number of entities)

C. Serializing objects to JSON
Sometimes web applications return JSON instead of HTML

view. It takes place when the final client is not a user’s browser
but another application or service, for example, Facebook API
which integrates other services with it.

In this experiment, like in the previous one, it is needed to
have a given number of project entities in the database. After
getting the value of parameter n from the query, the function
optionally prepares missed rows. Next, when the objects are
downloaded from the database, the time starts to be counted.
The idea of this experiment is to evaluate the time needed to
serialize objects to JSON.

Fig. 4. Serialization results (time versus number of entities)

The result of serialization experiment, when it is needed to
serialize more complicated object, for example, list of Project
entities with two deeper levels of relations, is presented in Fig.
4. The plot indicates that this time Grails is the worst
framework for serializing complex objects to JSON. The best
time was achieved by Django and was only a little better than
RoR.

D. Handling request
MVC frameworks function more or less in the same way.

The request from the client goes to the server which forwards it
to the Dispatcher. Dispatcher is a primary object which is
responsible for dispatching requests to the appropriate
controller. Then, the controller action could use all available
framework features to do the job, and return some response.
This experiment tested the average time needed to take care of
client requests, and dispatching the requests to the controller.

Contrary to the other experiments, this one needs startTime
parameters. Initially, after stepping into the controller action, a
current time is obtained. After that it is possible to count the
time, which passes between sending the request and stepping
into the appropriate controller.

115

TABLE I. HANDLING REQUEST TIMES

Framework Time

Ruby on Rails 13.53 ms

Django 1.8 ms

Grails 1.06 ms

The results are presented in Table 1. The time unit is
presented in milliseconds, and this is the average value from
one hundred tests. The difference between Grails and Django is
minimal for the benefit of the first one. The average request
handle time for Ruby on Rails is about ten times larger.

E. Sending response
Handling request experiments tested the time needed for

dispatching the request to the appropriate controller. This test
counts the time passed between the execution of the last
instruction of the controller and the moment when the response
is received by the final client. The research application has to
count the passed time.

TABLE II. SENDING RESPONSE TIMES

Framework Time

Ruby on Rails 0.54 ms

Django 1.05 ms

Grails 1.1 ms

The results of this test are presented in Table 2. Ruby on
Rails is the fastest framework in this comparison in preparing
response. Django and Grails have twice worse results, although
one millisecond is still a very small value, almost unnoticeable.

F. Rendering view
Rendering experiment has to get a list of project entities

from the database, map them to the object and pass to the
template engine, which renders HTML view. The web
application usually returns in response the HTML content
ready to be displayed via the browser, and this test assesses the
performance of the template engines in three frameworks.

First, the algorithm checks if the database has the required
number of projects. If it does not, than the missing entities are
inserted before counting the time. Next, the required number of
projects is downloaded from the database, and after that the
time starts to be counted. When the function returns HTML
content, the end time is received and elapsed time is calculated.
Now the function has only to prepare JSON response.

The experiment was done more than one thousand times
with a different number of rendered rows. Again, the results

show linear dependency (see Fig. 5). Django has the worst
time, with Ruby on Rails three times and Grails almost ten
times quicker.

Fig. 5. Rendering template results (time versus number of entities)

V. CONCLUSION
Concluding the results of the benchmarks, the best results

are obtained by Grails, which merely confirms a speed
advantage of compiled language in comparison with
interpreted language. Just in one test Grails scored the worst
time, and it happened in serializing objects to JSON with two-
level depth relations. Comparing Django and Ruby on Rails,
they are competitive with each other. Hence, it would be fair to
determine the tie. In the size of the community category, a job
market, an amount of available books and resources, Ruby on
Rails wins, while Grails has the worst score. Presented results
are reflected in development process, because the least
problems and the biggest help in documentation and the
Internet was for RoR. All examined frameworks provide
security features and support developers in writing non-
vulnerable applications.

The conclusion is that the choice of the web framework is
of secondary importance. In other words, any given framework
is not the ultimate blocker in the development path. The most
important thing in the decision process is to take into account
programming language preferences, the size of the community
and a job market.

REFERENCES
[1] Ruby on Rails. The website of ruby on rails framework, March 2017,

URL http://rubyonrails.org/.
[2] Django. The website of django framework, March 2017, URL

https://www.djangoproject.com/.
[3] Grails. The website of grails framework, March 2017, URL

https://grails.org/.
[4] D. Heinemeier Hansson, S. Ruby, D. Thomas, "Agile Web Development

with Rails 4", The Pragmatic Programmers, LLC, 2013.
[5] V. Kushner, O. Fernandez, K. Faustino, "The Rails 4 Way", Addison-

Wesley, 2014.
[6] W. Chun, J. Forcier, P. Bissex, "Python Web Development with

Django", Pearson Education Inc., 2009.
[7] B. Klein, D. Klein "Grails 2: A Quick-Start Guide", The Pragmatic

Programmers, LLC, 2013.

