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Abstract—In this paper we propose new probabilistic model 
of stochastic context-free grammars in Greibach normal form. 
This model might be perspective for future developments and 
researching stochastic context-free grammars. 

Анотація—В роботі запропоновано нову імовірнісну 
модель стохастичних контекстно-вільних граматик в 
нормальній формі Грейбах. Ця модель може бути 
перспективною для подальших досліджень стохастичних 
контекстно–вільних граматик. 
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I.  INTRODUCTION 
Today, there is a huge interest in developing new methods 

of natural language processing due to a lot of issues from 
cryptanalysis, biology and artificial intelligence. Several ways 
for investigation had been proposed since works of Noam 
Chomsky in the mid 50s that originated development of 
modern formal theory of syntax. His conception of generative 
grammars and context-free grammars became one of the most 
discussing and controversy in linguistics but these ideas lay 
behind development of formal theory of programming 
languages and compilers later. Context-free grammars were 
proposed firstly for describing grammar of English or any other 
language but this approach does not cover all features of 
language such as semantics. Later, head-driven grammars were 
introduced to describe some valuable properties of languages 
such as semantic dependencies between words. Probabilistic 

models of languages were proposed by Claude Shannon to 
describe informational aspects of languages such as entropy but 
they became very relevant and actual in modern linguistics. N-
gram model is one of the most accurate statistical models of 
language but the main drawback is that for precious learning 
this model for high values of N one needs a huge amount of 
texts in different thematic, but unfortunately, even if we have 
got a lot of texts it turns out to be harmful for accurate and 
precise modeling whole language. Because of this reason 
stochastic context-free grammars were introduced for more 
precious description of languages because context-freeness 
guarantees grammatical pattern of language and probability 
distributions on grammatical rules approach semantic structure 
of phrases. Stochastic context-free grammars are also useful in 
modeling DNA sequences, image recognition and modeling 
plain texts in cryptography so that investigation of stochastic 
context-free grammars in very important and actual in today’s 
science. 

 In this paper we consider stochastic context-free grammars 
in Greibach normal form although significant contributions in 
natural language processing was associated with algorithms of 
learning stochastic context-free grammars in Chomsky normal 
form but complexity of these methods is quite high. We 
propose new idea of investigation of stochastic context-free 
grammars based on our conception of hidden Markov models 
with stack.  

II. STOCHASTIC CONTEXT-FREE GRAMMARS 
Conception of stochastic context-free grammars (SCFG) 

came from several problems in natural language processing 
such as finding the most probable sequence of the words, 
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learning unknown grammar from corpora of texts etc. But NLP 
is not only sphere of applications of SCFG, several biologists 
and geneticists proposed usage SCFG for modeling DNA 
sequences, modern pattern recognition, speech processing, 
image processing also use this conception.  

We say that G = <N, Σ, R, S, P> is stochastic context-free 
grammar if and only if Q = <N, Σ, R, S> is context-free 
grammar (N – alphabet of nonterminal symbols or variables, Σ 
– alphabet of terminal symbols, R – set of production rules, S – 
start symbol) and one defines family of probability 
distributions P on R so that for every production in R there is 
probability of applying this production rule when forming 
some sequence of symbols such that sum of probabilities of 
productions starting with same symbol must be equal to 1. 

There are several normal forms of grammars. The most 
popular are Chomsky normal form and Greibach normal form. 

We say that context free grammar G = <N, Σ, R, S> is in 
Chomsky normal form (CNF) if and only if all production rules 
have form: 

A → BC 

A → a 

Our major interest forms Greibach normal form. 

We say that context free grammar G = <N, Σ, R, S> is in 
Greibach normal form (GNF) if and only if all production rules 
have form: 

A → aA1A2…An 

Where A is nonterminal, a is terminal symbol and A1A2…An 
is a probable empty sequence of nonterminal symbols except S. 

The definition of SCFG in GNF might get stronger if we set 
number of nonterminal symbols in right hand side of any 
production to be not larger than 2. Productions of such 
grammar will be in any of the following forms: 

  A → aA1A2 

  A → aA 

  A → a 

It could be shown that every SCFG in GNF might be 
transformed into equivalent grammar in the stronger GNF. For 
this reason in this paper we suppose that every Greibach 
normal form will be in the form described above.  

Every context-free grammar could be transformed to 
equivalent grammar in Greibach normal form in polynomial 
time such that languages they form are equal. The same idea is 
behind transforming SCFG to SCFG in Greibach normal form. 
We obtained algorithm for this transformation based on 
existing algorithm of transforming an ordinal CFG in Chomsky 
Normal form to context-free grammar in Greibach normal form 
adding several steps of rebalancing probability distributions P.  

Here is the algorithm: 

1. Eliminate null productions, unit productions and 
useless symbols from the grammar G and then 
construct a G0 = (V0, T , R0, S) in Chomsky Normal 

Form (CNF) generating the language L(G0) = L(G) − 
{ε}. 

2. Rename the variables like A1 , A2, . . . An  starting 
with S = A1. 

3. Modify the rules in R so that if Ai  → Ajγ ∈ R0  then j 
> i 

4. Starting with A1 and proceeding to An  this is done as 
follows: 

a) Assume that productions have been modified 
so that for 1 ≤ i ≤ k, Ai  → Aj γ∈  R0 only if j > 
i 

b) If Ak → Ajγ is a production with j < k, 
generate a new set of productions substituting 
for the Aj the body of each Aj production. The 
transfer probabilities should split uniformly 
from base probability. 

c) Repeating (b) at most k − 1 times we obtain 
rules of the form Ak  → Ap γ, p ≥ k 

d) Replace rules Aj  → Akγ by removing left-
recursion as stated above. Transfer 
probabilities should also be splitted. 

 
e. Modify the Ai → Aj γ for i = n − 1, n − 2, ., 1 in 

desired form at the same time change the Z production 
rules. 

III. SCORING PROBLEM FOR REGURAL GRAMMARS 
Suppose we have to find probability of sequence of 

symbols GNF generated: Pr(w1:n | G) i.e. solve the scoring 
problem. 

Trivial situation come up when our grammar in GNF is 
regular, i.e. all rules have form: 

A→aB 

Regular grammars are equivalent to finite state machines 
(FSM). This equivalence could be set if we assume that set of 
states of FSM is equal to set of nonterminal symbols and every 
transition is described by corresponding rule of grammar with 
emission of terminal symbol. 

We say that bivariate stochastic process {Xi,Oi, i=1,2,…} is 
hidden Markov model of order n by emissions (HMMn) if  

Pr(Xk | X1:k-1) = Pr(Xk | Xk-1) 

Pr(Ok | X1:k) = Pr(Ok | Xk-n+1:k) 

Xk are called latent variables or hidden states of HMM and Ok 
are called observations. 

Stochastic regular grammars are equivalent to hidden 
Markov models of order 2 by emissions. It follows from the 
fact that set of observed values corresponds to set of terminal 
symbols and set of latent variables corresponds to set 
nonterminal symbols of grammar. Second order of models is 
followed from fact that observed word depends on previous 2 
states, however order by transitions is still first. This 
equivalence also requires independence of appliance every 
grammatical rule. Because of this fact we could apply forward 
algorithm for solving scoring problem for stochastic regular 
grammar. Complexity of this algorithm is Θ(nm2), where n is 
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length of observed sequence and m is number of nonterminal 
symbols. 

IV. MARKOV CHAINS WITH STACK 
The case of general SCFG in GNF is much more 

complicated. If we try to build HMM out of SCFG in GNF we 
will face with some uncertainty with description of latent 
variables set. Naïve approach is based on setting equivalence 
between set of all possible sequences of nonterminal symbols 
that grammar could produce during inference all possible 
sentences. But in that case number of latent states could be 
very large and even unbounded because of all recursions in 
grammatical rules. 

Let’s try to overcome these difficulties. It is known fact that 
every context-free grammar is equivalent to some finite state 
machine with stack (pushdown automaton). Hence we could 
propose conception of hidden Markov model with stack for 
emulation SCFG in GNF.  

We say that stochastic process {St, t=1,…} is a Markov 
chain with stack M if and only if:  

Pr(St | S1:t-1, Mt) = Pr(St | St-1, Mt) 

Where Mt is element on the head of the stack at time 
moment t. 

Finally, we say that bivariate stochastic process {Si,Oi, 
i=1,2,…} is hidden Markov model with stack M of order n by 
emissions if and only if for any k>0 holds: 

Pr(Sk | S1:k-1, Mk) = Pr(Sk | Sk-1, Mk) 

Pr(Ok | Mk , S1:k) = Pr(Ok |Mk , Sk-n+1:k) 

As we can see, this definition differs from the origin 
definition of hidden Markov model because of Mk – head of 
the stack in conditional part of emission and transition 
probabilities.  

In fig. 1. there is example of Markov chain with stack: 

 
Fig. 1. Markov chain with stack 

Here A,B,C denote ordinary states and ε denotes special 
symbol used for sudden transition to state pointed by top of the 
stack M. Letters above arrows denote states to push into stack. 
Note that for every transition not more than one state could be 
pushed into stack. This fact corresponds to conception of the 
stronger GNF described in the second chapter. Symbol # 

denotes popping out head of stack to which chain jumps after. 
Transitional probabilities are omitted because the chain in 
example is deterministic. If start state is A than chain will 
produce sequence ABCABCABC… 

One could notice that stack size in this example is growing 
unrestrictedly but it is not common case for natural language’s 
grammars. The model terminates when stack is empty and 
model reaches # symbol. 

Our goal than will be setting up equivalency between 
stochastic context-free grammars in Greibach normal form and 
hidden Markov models of order 2 with stack (HMM2S). 

V. SCFG IN GNF AND HMM2S EQUIVALENCY 
In previous paragraph we could see that Markov chains 

with stack work just similar to the way stochastic context-free 
grammars in Greibach normal form infers sequences of 
nonterminal symbols. Indeed, if we consider state space of 
Markov chain with stack to be the set of nonterminal symbols 
in SCFG in GNF and transitions between states would show 
action of the rules of grammar in such way that first 
nonterminal symbol in right hand side of the rule would be 
state that the Markov chain with stack jumps to and letters 
above arrows are the rest of right hand side of the rule than we 
could negotiate equivalency between  nonterminal inferences 
in stochastic context-free grammars in Greibach normal form 
and  Markov chains with stack. 

A bit tricky step is construction of Hidden Markov model 
with stack that considers terminal productions in each step of 
inference some sentence. We need to deal with ambiguity of 
grammatical rules that could produce different terminal 
symbols but transfer to the same state. This problem could be 
solved by adding dependence to emitted terminal symbol by 
current state and previous. Hence we must build Hidden 
Markov Model of the second order. Also we should take to 
consideration that in general case of stochastic context-free 
grammar in Greibach normal form the first letter of each 
production would not identify uniquely state the system jumps. 
To solve this we propose to associate leftmost different 
sequences of nonterminal symbols to states of HMM. For 
example if we have rules: 

A → aCD 

B → bCE 

We will than have got states {A, B, CD, CE} for our 
HMM. In this case for each emission there would be no 
ambiguity to determine which grammatical rule has produced 
it. Note that in every step of production there is emission of 
terminal symbol. If some production in the form: 

A → a 

is applied the system will pop out the head state in the stack 
and will jump to that state. Size of the stack will reduce than. 

Thus we have obtained the hidden Markov model of the 
second order. 
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VI. OPEN PROBLEMS, WAYS OF SOLVING AND MOTIVATION 
FOR THIS MODEL 

As we could see, stochastic context-free grammars in 
Greibach normal form are equivalent to Hidden Markov 
models of the second order with stack. So that we could 
develop algorithms for finding particular sentence probability, 
probability of sequence of latent states (grammatical rules 
applied) and even algorithms for learning stochastic context-
free grammars. The main idea why construction proposed in 
this article might helpful is the fact that there is a lot of 
algorithms developed for ordinary hidden Markov models and 
they are quite scalable and easily transformable for appliance 
for more complex Markov models. 

For example for finding most probable latent state sequence 
there is Viterbi algorithm. For finding observed sequence 
probability there is forward algorithm. For learning model 
parameters there is Baum-Welch algorithm based on forward-
backward algorithm. Complexity of these algorithms is  
O(nm2) which is quite better than complexity of algorithms for 
stochastic context-free grammar in Chomsky normal form. For 
example the algorithm inside-outside for learning grammar in 
Chomsky normal form has complexity O(n3m3). This is the 
reason why equivalence of stochastic context-free grammars 
in Greibach normal form and hidden Markov models of the 
second order with stack may be very perspective. However, 
there might be a lot of work in developing theory of hidden 
Markov models with stack we believe that this ideas will be 
helpful for further researching in natural language processing, 
biology and computer science. 
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